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Measuring the disclosure protection of micro
aggregated business microdata
An analysis taking the example of German Structure of Costs
Survey

Rainer Lenz1

Abstract. To assess the effectiveness of an anonymisation method with respect to data
protection, the disclosure risk associated with the protected data must be evaluated. We
consider the scenario where a possible data intruder matches an external database with the
entire of confidential data. In order to improve his external database he tries to assign as
many correct pairs of records (that is, records referring to the same underlying statistical
unit) as possible. The problem of maximisation of the number of correctly assigned pairs is
translated into a multi-objective linear assignment problem (MOLP).
Regarding several variants of the micro aggregation anonymisation method applied to the
German structure of costs survey, we calculate approximative solutions to the MOLP ob-
tained by using two external databases as the data intruder’s additional knowledge. Finally,
a standard for so-called de facto anonymity is suggested.

1 Introduction

The deep interest in secret data has long a tradition. Towards the end of December 1855 the
deputy purveyor in chief in the Crimea, David Fitzgerald, submitted to the chief medical
officer a Confidential Report on the Nursing, since its introduction to the Crimea on 23rd
January. The contents of the confidential report soon became widely known in medical and
military circles. In it the purveyor criticised the nurses for lack of discipline, for drunkennness
and insubordination. In several letters Florence Nightingale, conducting at this time a
training establishment for nurses in Scutaris, expressed her nonconformity with the report:
“Having found that Mr. Fitzgerald’s Confidential Report was Confidential only from myself,
& has already ceased to be so in the Crimea ...”

In the last decade, the problem of confidentiality has become increasingly severe, since the
number of sources available to data intruders has risen, not least because of the rapid expan-
sion of the Internet. Disclosure occurs when an individual or an enterprise can be re-identified
in data that were collected with an assurance to protect confidentiality. Therefore, distrib-
utors of data (like statistical offices or private institutions) make sure to handle confidential
data with the utmost care. Their challenge is to pursue two objectives, i.e. providing useful
statistical information and ensuring protection to respondents. That is, the distributing

1Federal Statistical Office of Germany, Research Data Centre, rainer.lenz@destatis.de
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institutions have to weigh up between the preservation of accuracy and analytical validity
of data and the anonymisation of data in order to minimise the risk of re-identification of
statistical units to which they relate.

In 1987, the German Law on Statistics for Federal Purposes created the privilege of science,
allowing scientists and researchers access to so-called de facto anonymised microdata. A
data set was defined to be de facto anonymous if the costs of re-identification exceeded the
benefit of re-identification (Sturm 2002). By then, only completely anonymised microdata
files could be provided to scientists. That is, the statistical offices had to make sure that
intruders had no chance to deanonymise data in order to gain infomation about specific
organisations. Moreover, the statistical offices have ethical reasons to protect respondents
and they must be fully trustworthy to be able to gather data from respondents.

In Rosemann et al. (2004) the analysis potential of several variants of micro aggregation of
the German structure of costs survey has been examined. In the current paper the associated
re-identification risk is studied. In order to re-identify statistical units, a data intruder needs
additional knowledge about the units searched for (e.g. in the form of an external database)
containing variables the additional and the confidential data have in common. Moreover,
he needs knowledge about the participation of the units in the target survey, the so-called
response knowledge.

For an estimation of the re-identification risk (in business microdata), we consider three
scenarios of attack:

A Assignment between original data and anonymised target data.
(Calculation of an upper bound for the re-identification risk)

B1 Assignment between external data and formally anonymised target data (i.e. original
data without direct identifiers).
(Estimation of the natural protection in the data)

B2 Assignment between external data and anonymised target data.
(Realistic scenario)

The results obtained by scenario A do not represent the reality. Nevertheless, it would seem
advisable to involve scenario A into the estimation of the re-identification risk associated with
the tested microdata file and hence into the decision about the de facto anonymity of the
file, since the available additional knowledge of a data intruder is inassessable. The results
obtained by scenarios B1 and B2 line out, how far by courtesy of an assumption of the best
possible additional knowledge in scenario A the real re-identification risk is overestimated.
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2 Basic definitions and notations

Throughout the paper we will use the following denotations: A (finite) graph G = (V (G), E(G))
is a relational structure, consisting of a (finite) set V (G), the elements of which are called
vertices (or points), and a set E(G) ⊆ V (G)2 of unordered pairs of vertices, called edges

(or lines) of G. We denote these sets by V or E when there is no possibility of confusion.
We consider undirected graphs, fulfilling the implication (a, b) ∈ E =⇒ (b, a) ∈ E. That
is, E determines a symmetric binary relation. The edge (x, y) ∈ E is said to be incident

with the vertices x and y, and x, y to be adjacent. A graph S = (V (S), E(S)) is called
subgraph of G if V (S) ⊆ V (G) and E(S) ⊆ E(G) holds.
G is called bipartite graph with bipartition (X, Y ) if V (G) is a disjoint union V = X∪· Y ,
so that every edge e is incident with both an x ∈ X and a y ∈ Y . Moreover, if every x ∈ X
is connected to every y ∈ Y , the graph G is said to be complete. A matching M of G is
a subgraph with the property that no two edges in M have a common vertex. M is called
maximum matching if there is no matching M′ with M ⊂M′. If v is a vertex of M, then
M saturates v. Moreover, if every v ∈ V is saturated, M is called perfect matching. A
vector-weighted graph G is a graph combined with a weight function

w : E(G) −→ IRk,

e 7−→ (w1(e), . . . , wk(e)),

which maps every edge e to a k-tuple of real numbers. In the case k = 1 the graph G is a
weighted graph.

3 Types of variables and distances

In a database cross match, see Elliott and Dale (1999), the data intruder matches an
external database B with the whole confidential database A. For this, he uses variables which
the external data have in common with the confidential data, the so-called key variables.

External data
identifiers key variables (e.g. turnover,

(name, address) number of employees)
key variables (e.g. turnover, target variables

number of employees) (e.g. investments)
Target data

Fig. 1. Empirical key variables
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Obviously, the reporting quality of these variables is crucial for the success of the subsequent
re-identification process. The set of key variables is partitioned into two classes of variables,
namely categorical and numerical variables, which are described below.

3.1 Categorical and numerical variables

Numerical variables are defined to be discrete or continuous variables where the difference
between values has a meaning, e.g. “height”, “weight” of a person or “number of employ-
ees”, “total turnover” of an enterprise. Regarding a numerical variable vi, its values are
distanced by di(a, b) = (ai − bi)

2. In general, the treatment of numerical variables admits
less diversification than the treatment of categorical variables. When analysing categorical
data, it is always possible to work with counts or percentages of objects which fall within
certain categories. We differentiate between nominal variables (there is no ranking of the
categories) and ordinal variables (the categories have some kind of order, where differ-
ences between categories are meaningless). Regarding a nominal variable vi, its values are
compared for equality, such that we define

di(a, b) =

{
0, if ai = bi,
1 otherwise.

(1)

For a linear ordered variable vi, let c1 <i c2 <i . . . <i cr be its ordered range (i.e.
({c1, . . . , cr};<i) is a well-ordered set). We then define

di(a, b) =
|{cj | min(ai, bi) ≤i cj <i max(ai, bi)}|

r
. (2)

Since in practice there will often occur categorical variables with some non-linear partial
order (that is, there are at least two categories c1 and c2 with c1 6< c2 and c2 6≤ c1), formula
(2) does in general not fit. It is then possible to extend this non-linear ordering to a lattice-
order, where supremum sup{ci, cj} and infimum inf{ci, cj} exist for all pairs (ci, cj) . Using
an order preserving mapping f : {c1, . . . , cr} −→ R, the ith component distance can be
defined by

di(a, b) = |f(sup{ai, bi})− f(inf{ai, bi})|. (3)

For instance, consider the n-gram approach used for string variables (Efelky et al. 2002).

The distance between two strings is defined as di(a, b) =
√∑

∀s |fa(s)− fb(s)|, where fa(s)

and fb(s) are the number of occurrences of the substring s of length n in the two strings a
and b. Let us consider a small example, where n = 3 and the strings HONEY and MONEY
are given. We obtain di(HONEY,MONEY ) =

√
2, since there are two non common

substrings of length 3: HON and MON. In the case of hierarchical variables, the following
distance function is suggested:

di(a, b) = min{f(cj) | cj < ai and cj < bi}, (4)
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where for the order preserving mapping f holds f(ck) = 0 if there is no cl with cl <i ck.
Hierarchical variables may occur if some categorical variable was partially coarsened to
different degrees in the data set. For instance if in a business database the variable Branch
of economic activity (NACE code) is for some units specified on a 3-digit-level and for other
units specified on a 1- or 2-digit-level (see figure 2).

101 102 173 176

10 17

1

Fig. 2. Coarsening of the NACE code

Here, the distance between hierarchical variables is preferable to the simple
(0− 1)-distance in (1) being strongly separating, particularly if considerable deviations are
observed between both data sets in these variables.

For the planned adaption of different types of component distances, depending on the types of
variables vr, it is necessary to standardise the distances dr in order to avoid scaling problems,
e.g. by use of the max−min standardisation

d̃r(a, b) :=
dr(a, b)−min(α,β)∈A×B dr(α, β)

max(α,β)∈A×B dr(α, β)−min(α,β)∈A×B dr(α, β)
.

For large data sets, it is recommended to partition the data into subsets, as described in
subsection 3.2.

3.2 Blocking variables

To be a candidate for a possible assignment, it is necessary for a record pair that both
records coincide in their values of some specified variables. In the following these variables
are called blocking variables (e.g. see Jaro 1989), since they divide the whole data into
disjoint blocks.

The aim of blocking data is on the one hand to reduce the complexity of the subsequent
assignment procedure and the allocated main storage and on the other hand the number of
mismatches. Though the number of possible mismatches grows with the number of wrongly
classified records (that is, two records a and b which refer to the same individual are possibly
not members of the same block), mismatches have to be expected especially in large blocks
as there are many similar distances. Whether it will be possible here to find a reasonable
tradeoff depends on the quality of the variable used for blocking. It is in general difficult to
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estimate the reporting error probability of some variable intended for blocking. In the worst
case, the corresponding blocks in both data sets are disjoint, in the best case the chosen
blocking variables are unique identifiers, such that truly associated records belong to the
same block. If possible, the data intruder will opt for those variables, which are known to
have been left out of consideration within the anonymisation process.

The treatment of specific variables like identifiers and blocking variables can also be em-
bedded into the calculation of distances, where identifier variables are handled like nominal
variables. Now let vi be a blocking variable. In the application in section 7, the appearing
blocking variables are categorical ones, where the corresponding component distances are
defined by (1). Nevertheless, if a numerical variable v is intended for blocking, it is strongly
recommended to aggregate the range of v into intervals, such that every value falls uniquely
into some interval. That is, two values are distanced with zero if and only if their intervals
(categories) coincide.

From a theoretical point of view, the setting of blocking variables is a special case of multi-
dimensional clustering (see Schweigert 1999). Metrics often used in clustering analysis like
the general matrix metric

d(x, y) =
√
(x− y)TC(x− y),

where C is an arbitrary symmetric, positive definite matrix, are in most cases not of practical
relevance, since they involve an additional unacceptable computational amount already for
data files of medium size. Particularly, if C determines the inverse S−1 of the empirical
covariance matrix.

Note that there is a number of alternative methods to realise a preselection of candidate pairs.
A thorough analysis of those methods can be found in Elfeki, Verykios and Elmagarmid
(2002).

A formalisation of the concept of allocating individual weights to all key variables is given
in the subsequent section.

4 Preference functions and matchings

Among others, the success of a record linkage algorithm depends on the choice of distance
measures and on the reliability of each variable. Therefore, the decision maker rates the key
variables and prefers some of them to the others. This is done by use of so-called preference
functions.

Definition 1 Let Λ = (λ1, . . . , λk) ∈ (IR+)k be a k-tuple of positive real numbers. For
a record r = (r(1), . . . , r(s)), where s is the number of all variables, let w.l.o.g. the en-
tries r(1), . . . , r(k) be the values of the key variables. We define a k-ary linear preference
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function fΛ : IRk −→ IR by

fΛ(x1, . . . , xk) =
k∑

i=1

λixi.

Setting
∑k

i=1 λi = 1 and hereby λk = 1−∑k−1
i=1 λi, we may reduce the set of para- meters to

{λ1, . . . , λk−1}. The permutation τ , defined in such a way that

λτ(1) > λτ(2) > . . . > λτ(k),

can be understood as an individual ranking of variables by the decision maker. In the theory
of multicriteria optimisation, linear preference functions are used to turn multiobjective
optimisation problems into single objective ones (Schweigert 1995).
Let M be a matching and M ⊆ A× B its set of edges. We define componentwise

di(M) :=
∑

(a,b)∈M

di(a, b), i = 1, . . . , k

and further
∆(M) := (d1(M), . . . , dk(M)).

Definition 2 A maximum matchingM is called a preference matching if there is a pref-
erence function fΛ such that fΛ(∆(M)) ≤ fΛ(∆(M′)) holds for every maxi- mum matching
M′.

A single edge (a, b) can be regarded as a (non maximum) matching. Preference functions
involve for every (a, b) ∈ A×B the distance

d(a, b) := fΛ(∆(a, b)) =
k∑

i=1

λi · di(a, b).

This expression can be regarded as a weighted sum of all component distances. Now we are
able to calculate the distances d(a, b) for a ∈ A and b ∈ B, split into component distances
associated with categorical or numerical variables.

d(a, b) =
k∑

i=1

λi · di(a, b)

= τ ·
∑

i∈CV

λ̃i · di(a, b) +
∑

i∈NV

λi · di(a, b),

where CV is the set of indices of the categorical variables and NV its complement set of
indices of numerical variables. The parameter τ = λi/λ̃i is an adaptive control parameter,
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needed to balance the influence of categorical and numerical variables in order to achieve
a reasonable adaption. Key variables – besides blocking variables – which are involved in
distance calculations are tentatively called matching variables. Note that the concept
of blocking data can also be embedded into the calculation of distances as mentioned in
subsection 3.2. The distances d(a, b) can be split into their component distances associated
with blocking variables (BV ) and matching variables (MV ),

d(a, b) =
∑

i∈BV

di(a, b) +
∑

i∈MV

λi · di(a, b),

where identifier variables may be contained, for the sake of easy implementation, in the set
of matching variables, weighted with λi = 0. The weights of blocking variables are allocated
by λi = 1. If the records a and b coincide in their blocking variables, the first sum is zero.
Replacing λi by λi/

∑
j∈MV λj for each matching variable vi one obtains a convex combination

of the component distances, such that the second sum is a value less than or equal one. In
other words, two records a and b are distanced by d(a, b) ≤ 1 if and only if they are classified
to the same block. An alternative realisation of blocking data is to presort the whole data by
blocking variables and to read the data blockwise. The experience gathered by the author
has shown, however, that reading the data in and out block by block, a process usually not
accounted for in complexity analyses, is extremely time-consuming. Moreover, for large data
sets the summed-up distances d(a, b) should be compared with some appropriate threshold
value c < 1 – determined a priori – to decide whether the overall distances are small enough
to classify the pairs (a, b) as true matches.

5 Linear assignment problem

In a non-technical way, the concept of matching may be introduced as bringing together
pairwise information from two records, taken from different data sources, that are believed
to refer to the same individual. The records a and b are then said to be matched. Since in
general there is the possibility that the matching could be wrong, it is tried to minimise the
number of mismatches.

In the following let n = |A| = |B| = m. Otherwise consider w.l.o.g. the case m < n. Dually,
the case n < m can be treated. We then define new objects bm+1, . . . , bn which induce new
pairs (ai, bj) for i = 1, . . . , n and j = m+ 1, . . . , n, at a distance

d(ai, bj) := ( max
(a,b)∈A×B

d1(a, b), max
(a,b)∈A×B

d2(a, b), . . . , max
(a,b)∈A×B

dk(a, b)).

We obtain the multi-objective linear program described below:

Minimise






∑n
i=1

∑n
j=1 d1(ai, bj)xij∑n

i=1

∑n
j=1 d2(ai, bj)xij

...∑n
i=1

∑n
j=1 dk(ai, bj)xij

(MOLP)
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subject to xij ∈ {0, 1} for i, j = 1, . . . , n,
n∑

j=1

xij = 1 for i = 1, . . . , n and

n∑

i=1

xij = 1 for j = 1, . . . , n.

The constraints ensure that every ai is connected with exactly one bj and vice versa. That
is, xij = 1 if and only if ai is matched with bj.

As described in section 4, defining d(a, b) :=
∑k

i=1 λidi(a, b) and abbreviated dij := d(ai, bj),
the problem of finding an optimum matching is turned into a single objective assignment
problem (AP) using linear preference functions. The main idea is to combine all objectives
into one single value, as it is typically done in a linear program formulation. Note that linear
approaches in general lead to a considerable loss of useful information. When the summed-
up distances dij are calculated, the question of choosing weights is often glossed over, but in
fact it is extremely critical. In Schweigert (1995) it is shown that under certain assumptions
it suffices for the decision maker to define a range for the weights. However, there arises the
following single objective assignment problem:

Minimise
n∑

i=1

n∑

j=1

dijxij, (AP)

subject to xij ∈ {0, 1} for i, j = 1, . . . , n,
n∑

j=1

xij = 1 for i = 1, . . . , n and

n∑

i=1

xij = 1 for j = 1, . . . , n.

This assignment problem can be formulated graph theoretically as follows: Find a prefer-
ence matching on a vector-weighted bipartite graph. In other words, we have to look for a
permutation π of {1, . . . , n} which minimises the sum

∑n
i=1 di,π(i). That is, in order to solve

(AP), we might produce all n! matchings of G and select one of minimum weight. Unfortu-
nately, this algorithm will certainly not be efficient and thus does not justify the transition
from problem (MOLP) to (AP). Though there are classical procedures like the well-known
simplex-method (e.g. see Papadimitriou and Steiglitz 1998), which – despite non-polynomial
worst case run-time – turned out to be effective in practice, problems appeared already while
studying data with moderate block sizes. Considering the coefficients connected with the
system of linear equations of the restrictions in (AP) the following matrix is generated

A =

(
J1 J2 · · · Jn

In In · · · In

)
,
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where Ji defines a matrix of dimension n×n, whose ith row is the vector (1 1 · · · 1) and whose
remaining entries are zero. In = diag(1, 1, . . . , 1) defines the identity matrix of dimension
n×n. The resulting coefficient matrix A, possessing 2n rows and n2 columns, was in several
instances responsible for exceeding the working memory.

A way out is to use the Hungarian Method. We give a short description of this method,
originally proposed for maximum weight perfect matchings (Kuhn 1955 and Munkres 1957),
in order to find a minimum weight perfect matching or a preference matching, respectively.
Let us consider a complete, weighted bipartite graph G = (V,E). A feasible vertex

labeling l is a mapping from the set V into the real numbers, where

l(a) + l(b) ≤ d(a, b).

The number l(v) is then called label of v. The equality subgraph Gl is a subgraph of G
which includes all vertices of G but only those edges (a, b) fulfilling

l(a) + l(b) = d(a, b).

A connection between equality subgraphs and matchings of minimum weight is provided by
the following theorem.

Theorem Let l be a feasible vertex labeling of G. If the equality subgraph Gl possesses a
perfect matching M, then M is a minimum weight perfect matching of G.

Proof: Let M be a perfect matching of Gl and M′ be any perfect matching of G. Then it
holds that

d(M′) :=
∑

(a,b)∈M′

d(a, b) ≥
∑

v∈V (G)

l(v) (since M′ saturates all vertices)

=
∑

(a,b)∈M

d(a, b) (by definition of M)

=: d(M).

Hence, M is a minimum weight perfect matching of G. ♦

When applying the algorithm, we use two vectors of labels, (l(a1), . . . , l(an)) and (l(b1), . . . , l(bn)),
to select admissible edges. Initially, we set

l(ai) = 0 for i = 1, . . . , n

and l(bj) = min
1≤i≤n

d(ai, bj) for j = 1, . . . , n.

Using the concept of so-called augmenting paths, we find a matchingM of Gl which saturates
as many vertices as possible. If M is perfect, according to the above theorem M is a
minimum weight matching of G and the algorithm stops. M is then uniquely determined
up to equivalence. Else, if M does not determine a perfect matching, we relax the values
for some l(a) and l(b) so that new edges will be admissible.

A competing algorithm is the auction algorithm, introduced for the assignment problem in
Bertsekas (1979) and later extended to general transportation problems in Bertsekas and
Castanon (1989).
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6 Matching algorithm

In this section we suggest heuristic approaches to the single objective linear assignment
problem. Though the greedy heuristics introduced below do not guarantee optimality, those
approaches are also discussed, since their undoubted advantage is that they work in reason-
able time, more precisely in square time complexity according to the number of local units.
On the other hand, even when the global solution is not reached, the reached suboptimal
solution is in our case a very good solution.

6.1 Greedy heuristics

Often greedy algorithms are preferred on account of easy implementation and quick run-time
(e.g. see T. H. Cormen et al. 1990). In fact, the complexity of the procedures below is of
orderO(nm), where n andm are the numbers of records in A andB, respectively, whereas the
Hungarian method sketched in section 5 has complexity of order O(max{n,m}3) being not
practicable for data sets of large size. At this stage the distances belonging to (a, b) ∈ A×B
can be taken for granted.

Procedure I: begin {PROC I}
M := ∅

i := 1

While (i ≤ n and B 6= ∅) do
b′ := arg minb∈Bd(ai, b)

M :=M∪ {(ai, b
′)}

B := B \ {b′}
i := i+ 1

end {PROC I}
The procedure’s output is an assignment M of A to B. Obviously, the output depends on
the enumeration of a1, . . . , an and might be far from optimum. Let w.l.o.g. a1, . . . , ar be
assigned to bπ(1), . . . , bπ(r). In step r + 1 the target object ar+1 is associated with a record b
of minimum distance to ar+1. Record b is one of the remaining m − r records in B, which
have not been assigned at this stage. Note that deletion of the seventh row of the above
procedure would make it possible that some ai could be assigned to several b ∈ B (so called
’one to many’ assignment), so that the resulting assignment would not be unique and a
decision maker would have to make a further selection (Lenz et al. 2004). An essential
improvement of Procedure I is achieved by Procedure II below, where the enumeration has
a smaller impact and can theoretically be disregarded if there is at least one continuous
variable under consideration. The idea consists in a consecutive selection of pairs with the
smallest distance as long as both, the external and target data sets, are nonempty.
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Procedure II: begin {PROC II}
Sort the distances in an ascending list L
While L is nonempty do

Consider the first element dij of L and assign (ai, bj).

Delete all elements drs of L, where r = i or s = j.

end {PROC II}
The most harmful disadvantage of the above procedures is that the records are not linked
simultaneously. Nevertheless, experience has shown that Procedure II yields results near
the (optimum) solution of (AP). Moreover, for large statistics (for instance the whole of
German turnover tax statistics) it is nearly impossible to compute the optimum solution in
reasonable time.

6.2 Matching algorithm

Based on the previous considerations we propose the following matching algorithm:

1) Input: Sets A = {a1, . . . , an}, B = {b1, . . . , bm} of records and
V = {v1, . . . , vk} of key variables.

2) Partition the problem into sub-problems by use of blocking
variables BV ⊆ V .

3) Calculate the component distances in order to construct a
vector weighted bipartite graph G.

4) Turn from (MOLP) to (AP) by setting of individual weights
Λ = (λ1, . . . , λk), as described in section 4.

5) To solve (AP), apply alternatively

• the Hungarian Method or

• one of the procedures presented.

6) Output: (1− 1)-assignment of A to B.

Note that the amount of the calculation of distances takes O(knm), where k is the number of
key variables. That is, using one of the heuristics suggested in section 6.1, the total amount
of cpu-time of the whole matching algorithm is of order O(knm). In our case, it holds in
general k << n and k << m, such that we may neglect the factor k within the analysis of
complexity. In practise, the cpu-time is significantly reduced by blocking the data.
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6.3 Illustrative example

To illustrate the matching algorithm previously mentioned, we consider a small example. We
link original data A = {a1, . . . , a4} with masked data B = {b1, . . . , b4}, where the objects
are associated by five common variables v1, . . . , v5.

obj.\var. v1 v2 v3 v4 v5

a1 14, 008, 906 755, 187 907, 264 6, 582, 133 4, 794, 809
a2 14, 309, 437 673, 189 1, 179, 713 8, 111, 720 5, 407, 676
a3 14, 330, 083 567, 300 920, 065 4, 871, 720 1, 667, 078
a4 14, 780, 637 567, 553 1, 026, 861 5, 313, 029 3, 654, 241
b1 14, 825, 332 563, 928 913, 631 4, 978, 410 1, 711, 353
b2 14, 045, 802 724, 071 1, 040, 229 7, 064, 023 5, 078, 378
b3 13, 945, 802 682, 110 973, 631 7, 378, 984 508, 494
b4 14, 996, 199 563, 928 1, 050, 673 5, 252, 164 3, 871, 084

Enumeration of all 24 perfect matchings then leads to:

M1
M3 M4M2 M5 M6

M13

M7

M19

M8

M14

M20

M9

M15

M21

M10

M16

M22

M11

M17

M23

M12

M18

M24

a1

b1

a4a3a2

b4b3b2

Fig. 3. Perfect matchings

We determine the standardized distances for each component and obtain the following poset
(partially ordered set) of perfect matchings, ordered lexicographically by their vector-weights

∆(M) = (d1(M), . . . , d5(M)) =




∑

(ai ,bj)∈M

d1(ai, bj), . . . ,
∑

(ai,bj)∈M

d5(ai, bj)


 .
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21

22

16
18

12

20

4

15

1

24

86

23

14

10
11

13

17

19
7

2

9

3

5

Fig. 4. Poset of vector-weighted perfect matchings

The minimum elements M1,M4,M6,M8,M11 and M15 of this poset are called efficient
matchings. Taking Figure 4 as a basis, we may intuitively pick M6 as solution, since it is
covered by all inefficient perfect matchings. This intuition is confirmed below.

In order to turn the (MOLP) into (AP), we apply the preference function fΛ with Λ =
(1
5
, . . . , 1

5
) to ∆(M), that is, no objective is prefered to the other. The following table

compares the results obtained by the procedures PROC I, PROC II and the Hungarian
Method. The first entry in each cell refers to the number of true assignments, the second to
the total sum of distances.

PROC I PROC II HM
2; 2.88 4; 2.38 4; 2.38

Procedure II and the Hungarian method led to the true assignment M6. By modification
of Λ, application of the corresponding fΛ to the vector-weights and choice of the Hun-
garian Method, the decision maker is able to find another efficient matching, e.g. Λ1 =
(1
3
, 0, 2

3
, 0, 0),Λ4 = (0, 1, 0, 0, 0),Λ8 = (0, 0, 0, 1, 0),Λ11 = (0, 0, 1, 0, 0) and Λ15 = (0, 0, 2

3
, 0, 1

3
)

yield the efficient matchings M1,M4,M8,M11 and M15.

7 Matching the German SCS

In order to advance the conflicting goals of exploiting the research potential of microdata
and maintaining acceptable levels of confidentiality, there is need for appropriate anonymi-
sation methods. In this section we study the protection effects of several variants of the
micro aggregation anonymisation method (see e.g. Domingo-Ferrer and Mateo-Sanz 2002)
on the German structure of costs survey, abbreviated: SCS. Up to now, these methods have
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proven to generate useful material according to applied econometrics. The micro aggrega-
tion method first divides the set of variables into groups. Within a group, the variables are
standardised and summed up for each record, such that the records can be sorted by those
called Z-scores. Afterwards, for a pregiven number k (in our case k = 3), the records with
the greatest and smallest Z-scores are classified together with their k − 1 nearest neigh-
bours (with respect to Euclidean distance) and their values are averaged. Hence, in the
class of micro aggregated data from some confidential original source, the weakest degree
of anonymisation is achieved where each variable forms its own group (here, the structure
of data is essentially preserved), whereas putting all variables into the same group creates
the strongest degree of anonymisation because there are triples of records which agree in
all numerical variables and hence can only be separated using the categorical ones. That
is, from the class of micro aggregated data of an original source file, the data distributing
institution may extract the variant with the desired degree of anonymisation.

We choose the variants of micro aggregation by 1, 8, 11 and 33 groups of variables, which
have been extracted by the German national project on anonymisation of business microdata.
Similar preservation properties regarding the analytical validity of the data were obtained
using the method SAFE, introduced in Evers and Höhne (1999), which has been developed
by the Land Statistical Office Berlin. The weakest of the considered variants of micro ag-
gregation, where every numerical variable defines its proper group, is the 33-group variant
MA33G. Using this variant the structure of data is widely preserved (Rosemann et al. 2004).
The strongest is the multidimensional micro aggregation MA1G, where all numerical vari-
ables are grouped together. The variant MA8G is obtained by forming eight groups of a size
between two elements (smallest group) and twelve elements (largest group), where highly
correlated variables are put together. The variant MA11G is obtained by partitioning the
set of numerical variables into three-element groups. We also consider the weakest possible
form of anonymisation, formal anonymisation, consisting essentially in the deletion of direct
identifiers like name, address and so on (FORMAL).

Subsection 7.1 contains a brief description of the German structure of costs survey. In
subsection 7.2, we carry out the realistic scenario, where the data intruder’s additional
knowledge consists of an external database. For this simulation, we use as external databases
both the German turnover tax statistics (subsection 7.2.1) and the commercially available
MARKUS database (subsection 7.2.2). In subsection 7.3, the previously obtained results are
contrasted with those obtained by matching records of the original German structure of costs
survey with different variants of anonymisation of the survey. This may be regarded as the
worst-case scenario, where the data intruder possesses the original data as the best possible
external data. However, one should not presume that the data intruder possesses information
about all 33 numerical variables of the survey. Realisticly, the external database of the data
intruder will contain only a few key variables as in subsections 7.2.1 and 7.2.2. Regarding
examinations as in subsections 7.2.1 and 7.2.2, there are in general many more difficulties
to be expected for experiments with data of different sources and fewer key variables, not
least because of the fact that the data intruder has – besides the reliable total distance of
the assignment – no facility to evaluate his results. It is not least for that reason that the
author feels it makes sense – as a concession to the data users – to run experiments also for
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the worst-case scenario A with variables most likely to be found in commercial enterprise
databases in addition to the experiment including all variables.

7.1 The target data used

The German structure of costs survey, limited to the manufacturing industry, is a projectable
sample and includes a maximum of 18,000 enterprises with 20 or more employees. All
enterprises with 500 or more employees or those in economic sectors with a low frequency
are included. That is, a potential data intruder has knowledge about the participation
of large enterprises in the survey. We consider the survey of the year 1999, covering 33
numerical variables (among which are Total turnover, Research and Development and the
Number of employees) and two categorical variables, namely the Branch of economic activity
(abbreviated: NACE), broken down to the 2-digit level, and the Type of administrative
district (abbreviated: BBR9), which has 9 values depending on the degree of urbanisaton of
the region considered. The complete list of variables available in the German structure of
costs survey is appended to the paper.

The table below contains an excerpt of the German structure of costs survey, classified by
the categorical variables mentioned above.

Table 1. Partitioning of the German structure of costs survey

nace2\bbr9 1 2 3 4 5 · · · 8 9 Sum

10 5 5 2 4 0 · · · 7 0 39
14 7 19 15 4 2 · · · 24 8 157
... · · · ...
20 38 54 50 15 8 · · · 57 42 504
22 356 154 57 23 91 · · · 54 18 950
24 267 174 82 32 37 · · · 66 14 901
25 97 187 90 25 16 · · · 85 41 867
26 116 108 73 49 35 · · · 100 72 965
27 120 152 44 21 18 · · · 29 16 593
30 33 28 11 2 12 · · · 13 0 153
... · · · ...
37 13 15 6 9 9 · · · 11 2 94

Sum 2, 920 2, 994 1, 379 486 788 · · · 1, 488 677 16, 918

Totally, there are 26 economic sectors and hence 234 data blocks of a size between 0 and 670
records under consideration.

In the following sections the solutions obtained by Procedure II are presented in detail,
since their structures (concerning the distributions of the number of re-identified enterprises
among employee size classes) are near the structures obtained by application of Procedure I
and the Hungarian method.
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7.2 External versus micro aggregated confidential data

In the following we simulate the scenarios B1 and B2 mentioned in section 1 using a sample
of around 9,300 records of the German turnover tax statistics (subsection 7.2.1) and a sample
of around 9,400 records of the commercially available so-called MARKUS database (subsection
7.2.2) as the data intruder’s additional knowledge.

7.2.1 The German turnover tax statistics

Turnover tax statistics (TTS) are based on an evaluation of monthly and quarterly advance
turnover tax returns to be provided by entrepreneurs whose turnover exceeds EUR 16,617 and
whose tax amounts to over EUR 511 per annum. Also excluded are enterprises with activities
which are generally non-taxable or where no tax burden accrues (e.g. established medical
doctors and dentists without laboratory, public authorities, insurance agents, agricultural
holdings). The key variables available are:

• Branch of economic activity (NACE2, blocking variable)

• Type of administrative district (BBR9, blocking variable)

• Total turnover (matching variable).

Classifying the number of true matches achieved by Procedure II into intervals relating to
the number of employees, we obtain:

Table 2. Re-identifications (TTS) classified by the number of employees∗

target data total 1 2 3 4 5 6

MA1G 404 103 61 55 64 47 74
0.0435 0.0330 0.0259 0.0261 0.0755 0.0916 0.2151

MA8G 1, 177 366 223 246 137 96 109
0.1270 0.1173 0.0949 0.1168 0.1616 0.1871 0.3169

MA11G 2, 551 824 602 570 238 180 137
0.2748 0.2641 0.2561 0.2705 0.2807 0.3509 0.3983

MA33G 2, 695 894 639 580 246 189 147
0.2903 0.2865 0.2718 0.2753 0.2901 0.3684 0.4273

FORMAL 2, 677 890 635 574 247 189 142
0.2884 0.2853 0.2701 0.2724 0.2913 0.3684 0.4128

∗1=20–49, 2=50–99, 3=100–249, 4=250-499, 5=500-999, 6=1000 and more.

The table contains in each cell the absolute (first row) and relative (second row) frequency
of successful attempts using Procedure II. The second row contains the relative frequency of
correctly matched pairs concerning the number of enterprises contained in the size classes
regarding the external data. It can be observed that the distribution of the shares rapidly
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approaches the corresponding distribution of scenario B1 (last row in table 2) as the degree
of anonymisation goes down. The smallest ratios of correct assignment are obtained for
enterprises with 50 to 249 employees. We should like to point out here that some caution
needs to be exercised in interpreting the results as the distribution may change considerably
when the employee size classes are formed differently.

Although it is normal that for larger enterprises the micro aggregation procedures cause more
pronounced changes in the variables, the column on the right of table 2 shows a notably high
risk of re-identification for enterprises with at least 1,000 employees. Even in the case of the
MA1G variant, about 21 per cent of the large enterprises could be re-identified.

A similar structure of this distribution is attained by an application of Procedure I [between
251 (MA1G) and 1,680 (MA33G) re-identifications overall] and the Hungarian method [be-
tween 417 (MA1G) and 2,786 (FORMAL) re-identifications overall].

As expected, the number of re-identifications rose considerably as we passed over from variant
MA8G to variant MA11G. That is due to the fact that for the MA8G variant the numerical
variable Total turnover was micro aggregated in a group containing 12 elements (including
variables 8, 9 and 32, see appendix) and thus modified strongly. In variant MA11G To-
tal turnover is found in a group of three elements (together with variables 9 and 15, see
appendix), in which every two variables correlate with at least 0.92.

Data incompatibilities are a major reason for incorrect matchings. While only about 1 %
of the enterprises have been classified differently with regard to the regional information,
nearly 25 % of the enterprises covered by the structure of costs survey have been assigned to
another branch of economic activity than their respective records of turnover tax statistics.
With regard to the variable Number of employees there also are significant differences in both
surveys. Total turnover figures match relatively well. Only some 18.8 % of the enterprises
show deviations of more than 10 % in the surveys.

7.2.2 The MARKUS database

The MARKUS database (in German, Marketinguntersuchungen) covers selected enterprises
reported on by ”Creditreform”. It is readily available as a CD-ROM from shops and is
published quarterly, with only about 4 % of all enterprises replaced per edition. Generally,
the MARKUS database contains enterprises recently examined and not having blocking notes
due to insolvency. Therefore, it is not a representative sample of the population. The key
variables available are (one additional variable with respect to subsection 7.2.1):

• Branch of economic activity (NACE2, blocking variable)

• Type of administrative district (BBR9, blocking variable)

• Total turnover (matching variable)

• Number of employees (matching variable).
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For variant MA8G, the two numerical key variables used were mico aggregated in a common
group. This means that smaller differences between the variables were lost. For variant
MA11G, the variable Number of employees was micro aggregated in a 3-element group (to-
gether with variables 5 and 23) like the variable Total turnover, so that the values of these
two variables were modified to a lesser degree.

In these experiments, the numerical key variables have been weighted with the same value
λ1 = λ2 = 0.5. Note that a data intruder might prefer the variable Total turnover to Number
of employees if he had knowledge on the data incompatibilities discussed in subsection 7.2.1.

In line with table 2 we get

Table 3. Re-identifications (MARKUS) classified by the number of employees∗

target data total 1 2 3 4 5 6

MA1G 353 59 35 71 60 53 75
0.0376 0.0219 0.0150 0.0309 0.0581 0.0897 0.1667

MA8G 1, 845 343 347 503 279 210 163
0.1964 0.1274 0.1490 0.2187 0.2703 0.3553 0.3622

MA11G 2, 273 419 448 609 355 244 198
0.2420 0.1556 0.1924 0.2648 0.3440 0.4129 0.4400

MA33G 2, 289 420 443 609 370 246 201
0.2437 0.1560 0.1902 0.2648 0.3585 0.4162 0.4467

FORMAL 2, 294 420 442 610 373 247 202
0.2442 0.1560 0.1898 0.2652 0.3614 0.4179 0.4489

∗1=20–49, 2=50–99, 3=100–249, 4=250-499, 5=500-999, 6=1000 and more.

As in subsection 7.2.1 the distribution of the number of successful attempts among the
employee size classes does not change significantly using Procedure I and the Hungarian
method. In total, by application of Procedure I one obtains between 211 (MA1G) and 1,403
(FORMAL) re-identifications, by application of the Hungarian method between 364 (MA1G)
and 2,357 (FORMAL).

Here the difference between variant MA8G to MA11G is not as pronounced as in the preced-
ing experiment. This also holds for the transition from the enterprise size class of 50 – 999
employees to the class containing enterprises with more than 999 employees. The weaker
anonymisation variants MA11G, MA33G and FORMAL produce lower hit rates for smaller
and medium-sized enterprises (20 to 249 employees) than in the previous experiment. It is
somewhat surprising that the hit rate for variant MA8G increased against the previous ex-
periment as there are more pronounced deviations here in both surveys. While the deviation
amounting to about 24 % for all enterprises in the classification of economic activities is in
line with the preceding experiment as are the slight deviations in the regional data of less than
2 %, there are much more marked differences regarding Total turnover. About 50 % of the
enterprises deviate from each other by more than 10 % in the two surveys.
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7.3 Original versus micro aggregated data

In order to get an upper bound for the disclosure risk, the results of the foregoing section
are contrasted with the results obtained assuming the worst-case scenario, in which the
external database equals the original data without direct identifiers. In the following, we
choose several subsets of the numerical variables as matching variables. At first, the whole
of 33 numerical variables is used as matching variables (worst-case scenario). We also carry
out matching experiments using one matching variable, namely Total turnover (in order to
contrast the result with the one contained in the realistic scenario in subsection 7.2.1), two
matching variables, namely Total turnover and Number of employees (in order to contrast
the result with the one contained in the realistic scenario in subsection 7.2.2), and three
matching variables, namely Total turnover, Number of employees and Total intramural R&D
expenditure. The latter variable can be in some cases obtained e.g. via internet searches. As
in section 7.2, in all experiments the categorical variables BBR9 and NACE2 were used for
blocking the data.

The following table shows the relative frequency of true matches obtained by Procedure II.
The first and second entries in each cell refer to the relative and the absolute frequency of
true matches obtained using 1, 2, 3 and 33 matching variables.

Table 4. Re-identifications classified by the number of matching variables

micro aggreg. data 33 variables 3 variables 2 variables 1 variable

MA1G 8, 941 2, 156 2, 076 1, 096
0.5285 0.1274 0.1227 0.0648

MA8G 16, 792 12, 820 11, 127 3, 621
0.9926 0.7578 0.6577 0.2140

MA11G 16, 853 16, 732 16, 765 12, 066
0.9962 0.9890 0.9910 0.7132

MA33G 16, 918 16, 918 16, 912 16, 757
1.0000 1.0000 0.9996 0.9905

FORMAL 16, 918 16, 918 16, 918 16, 918
1.0000 1.0000 1.0000 1.0000

The protection increases notably if the data intruder has only one matching variable available
(Total turnover) instead of two matching variables (Total turnover and Number of employ-
ees). For the transition from two matching variables to three matching variables only slight
differences are observed, in the case of MA11G the hit rate actually decreases. Anyway, the
weak protection effect of MA11G, as already observed in subsection 7.2, is confirmed.

As in tables 2 and 3, we consider the distribution of the frequency of re-identifications among
the employee size classes, starting with the one matching variable experiment:
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Table 5. Re-identifications using one matching variable classified by the number of employees∗

target data total 1 2 3 4 5 6

MA1G 1, 096 243 161 164 151 145 232
0.0648 0.0459 0.0391 0.0420 0.0859 0.1336 0.3069

MA8G 3, 621 1, 043 681 765 417 354 361
0.2140 0.1970 0.1653 0.1959 0.2372 0.3263 0.4775

MA11G 12, 066 3, 841 2, 852 2, 706 1, 252 800 615
0.7132 0.7255 0.6924 0.6928 0.7122 0.7373 0.8135

MA33G 16, 757 5, 236 4, 084 3, 873 1, 741 1, 078 745
0.9905 0.9890 0.9915 0.9916 0.9903 0.9935 0.9854

FORMAL 16, 918 5, 294 4, 119 3, 906 1, 758 1, 085 756
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

∗1=20–49, 2=50–99, 3=100–249, 4=250-499, 5=500-999, 6=1000 and more.

The increase in the hit rate is quite marked for the transition from MA8G to MA11G. The
results of Table 5 may be related to the results of the realistic scenario in subsection 7.2.1
(Table 2) as the same common variables were available in the additional knowledge (Turnover
tax statistics) used there. For Procedure I the number of re-identifications is between 711
(MA1G) and 15,707 (MA33G) overall. An application of the Hungarian method yields
between 1129 (MA1G) and 16,834 (MA33G) re-identifications overall.

Dually to Table 5 we obtain the distribution of re-identifications among the employee size
classes concerning the experiment with two matching variables:

Table 6. Re-identifications using two matching variables classified by the number of employees∗

target data total 1 2 3 4 5 6

MA1G 2, 076 394 344 420 311 275 332
0.1227 0.0744 0.0835 0.1020 0.0796 0.1564 0.3060

MA8G 11, 127 3, 344 2, 610 2, 578 1, 206 769 620
0.6577 0.6317 0.6336 0.6600 0.6860 0.7088 0.8201

MA11G 16, 765 5, 237 4, 076 3, 879 1, 746 1, 079 748
0.9910 0.9892 0.9896 0.9931 0.9932 0.9945 0.9894

MA33G 16, 912 5, 294 4, 117 3, 906 1, 756 1, 085 754
0.9996 1.0000 0.9995 1.0000 0.9989 1.0000 0.9974

FORMAL 16, 918 5, 294 4, 119 3, 906 1, 758 1, 085 756
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

∗1=20–49, 2=50–99, 3=100–249, 4=250-499, 5=500-999, 6=1000 and more.

For Procedure I the number of re-identifications is between 1,674 (MA1G) and 15,721
(MA33G) overall. An application of the Hungarian method yields in total between 2,136
(MA1G) and 16,912 (MA33G) re-identifications.
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Regarding MA11G and MA33G, it is observed that the percentage of true matches in the
class of 1,000 or more employees is actually recessive. As in the experiment with the MARKUS
database (see Table 3), there is a pronounced increase in the hit rate between MA1G and
MA8G, while the difference between MA11G and MA33G almost seems to be negligible.

8 A standard for de facto anonymity

Two approaches seem reasonable for evaluating the protection of confidential data. There
is on the one hand the calculation of the relative frequency of true matchings at the level of
the units observed and on the other hand the computation of useful, successfully matched
micro data at variable level (it is possible that a data intruder finds a value he can use
although units were matched which do not correspond). In order to obtain a standard for
de facto anonymity making more concessions to the target audience of business microdata
(mainly researchers of economic and statistical sciences), we suggest a combination of both
approaches. More precisely, we give an estimate for the disclosure risk of some confidential
data taking into account both the percentage of re-identified records and the associated
percentage of useful information gained by the data intruder. If this estimated value is
below a previously specified threshold the data is then defined to be de facto anonymous.
In chapter 7, the percentage of re-identifications was calculated for several simulations. We
are going to continue with that example.

8.1 Benefit from re-identification

Even the successful assignment of a unit may be a fruitless disclosure attempt, i.e. when
the interesting individual value (or the interesting individual information) deviates by a
pre-determined threshold value γ from the actual original value.

We introduce thresholds γi for each variable vi. Let r(i) be the value of variable vi of some
considered record r of the anonymised data and o(i) its corresponding original value. r(i) is
said to provide useful information to the data intruder if

r̃(i) :=
|o(i) − r(i)|
|o(i)| < γi (5)

holds. That is, the relative deviation from the original value is below some thres- hold
γi > 0. In the following, a common threshold γ is used for all numerical variables to make
the concept presented more easy to handle.

8.2 Disclosure risk

Let R be the set of re-identified units, r = (r(1), . . . , r(n)) a record of the target data and
o = (o(1), . . . , o(n)) the corresponding unit of the original data. A value o(i) is said to be
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disclosed if both, r̃(i) < γ and r ∈ R, hold for some predefined γ. That is, we have to
estimate the probability Pγ(o

(i) disclosed) := P (r̃(i) < γ and r ∈ R).

As an estimate for the probability P (r ∈ R) we set the percentage P̂ (r ∈ R) of true matches
(records which have been re-identified by the matching algorithm). The re-identified records
of the target data are now tested to contribute useful information in the following way. For
each true match and all numerical variables (including matching variables), the percentage
of values fulfilling the inequality (5) for some pregiven threshold γ > 0 is an estimate for the
conditional probability P (r̃(i) < γ | r ∈ R) and denoted by P̂ (r̃(i) < γ | r ∈ R). Thus, as an
estimate for the disclosure risk associated with the anonymised microdata file on trial we set

P̂γ(o
(i) disclosed) := P̂ (r ∈ R) · P̂ (r̃(i) < γ | r ∈ R). (6)

In table 8 the concept is applied to the experiments in subsection 7.3 with two matching
variables. The first entry in each cell corresponds to the value P̂γ(o

(i) disclosed), the second

to the value P̂ (r ∈ R) and the third to P̂ (r̃(i) < γ | r ∈ R). If no threshold γ has been de-
fined, the estimator of the risk of disclosing useful values is reduced to the share of correctly
matched units (see table 8, column γ =∞).

Table 8. Disclosure risk on a γ-level using two matching variables (scenario A)

target data\γ ∞ 0.001 0.005 0.01 0.05 0.1 0.2

0.0246 0.0254 0.0266 0.0352 0.0446 0.0603
MA1G 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227

0.2002 0.2072 0.2168 0.2865 0.3636 0.4913
0.1858 0.2088 0.2326 0.3790 0.4851 0.5683

MA8G 0.6577 0.6577 0.6577 0.6577 0.6577 0.6577 0.6577
0.2825 0.3175 0.3536 0.5762 0.7376 0.8642
0.3226 0.4546 0.5565 0.8094 0.8815 0.9291

MA11G 0.9910 0.9910 0.9910 0.9910 0.9910 0.9910 0.9910
0.3255 0.4587 0.5616 0.8167 0.8895 0.9376
0.8908 0.9811 0.9904 0.9976 0.9985 0.9990

MA33G 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996
0.8911 0.9815 0.9908 0.9980 0.9989 0.9994

As an example, the disclosure risks related with the anonymisation variants at the γ = 0.05
level were printed in bold letters. Especially in the stronger variants of micro aggregation,
the marked change in the original values is accounted for by the benefit it provides. For
instance, a hit rate of 65.8 % contrasts with a disclosure risk of 37.9 % for variant MA8G.

As variant MA33G modifies the original data only slightly, the suggested concept will be of
little effect here.
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Note that from the point of view of a risk-adverse data intruder, the probability complemen-
tary to (6) is decisive:

Pγ(o
(i) not disclosed) = 1− Pγ(o

(i) disclosed)

= P (r 6∈ R) + P (r̃(i) ≥ γ | r ∈ R).

For instance, in variant MA8G with the threshold of γ = 0.05, he would be put off by
knowledge of the estimated probability of 62.1 % of finding a useless value.

8.3 De facto anonymity

To be able to determine a threshold for de facto anonymity, scenarios B1 and B2, in the
following taken together as B, should also be considered since the actual risk of disclosing
useful information was overestimated considerably on the sole basis of worst-case scenario
A. A possible approach would be to estimate the probability (6) also for scenario B (where
formally anonymised data are analysed, scenario B2, otherwise B1) and to define a convex
combination

P̂γ(o
(i)disclosed) := λ · P̂A/γ(o

(i)disclosed) + (1− λ) · P̂B/γ(o
(i)disclosed) (7)

where the position parameter λ ∈ [0, 1] has to be set individually, depending on the structure
of the confidential data and the quality of the data provider’s additional knowledge. If
λ = 1, almost completely anonymised data material would be produced provided that λ was
determined with caution. If λ = 0, the data provider would have unlimited confidence in
the realistic simulations performed and be certain that a potential data intruder could not
have additional knowledge of a better quality.

With the aim of obtaining a reasonable estimator P̂B/γ(o
(i)disclosed), the realistic scenario

should be repeated quite often in practice (for additional knowledge from different sources).
We analogously carry out the calculations in table 8 for the two realistic scenarios in 7.2 and
contrast the results with the worst-case scenario for γ = 0.05 in table 9 and figure 5.

Table 9. Disclosure risk on a 0.05 level depending on three ex-

periments

target data \ external data Original TTS MARKUS

MA1G 0.035 0.017 0.013
MA8G 0.379 0.072 0.108
MA11G 0.809 0.225 0.194
MA33G 0.997 0.290 0.243
FORMAL 1.000 0.288 0.244

As a general rule, there are areas at risk within the data material which should receive
special protection. Therefore we strongly recommend that the concept is applied also to
parts. After breaking down the results by size classes of employees, we obtain the disclosure
risks listed in table 10 and illustrated in figure 6 for a threshold of usefulness γ = 0.05 and
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Scenario A Scenario B (TTS) Scenario B (MARKUS)

Fig. 5. Disclosure risk on a 0.05 level depending on three experiments

a position parameter λ = 0.2 using formula (7). As an estimator for PB/γ(o
(i) disclosed) in

table 10, the arithmetic mean of the respective estimator was calculated via scenarios using
the MARKUS data and the turnover tax statistics as external data.

Table 10. Aggregated disclosure risks at the 0.05 level for size classes of employees∗

target data total 1 2 3 4 5 6

MA1G 0.0191 0.0094 0.0064 0.0080 0.0174 0.0214 0.0366
MA8G 0.1278 0.1156 0.1112 0.1282 0.1426 0.1350 0.1464
MA11G 0.3474 0.3178 0.3194 0.3364 0.3426 0.3704 0.3528
MA33G 0.4130 0.3756 0.3840 0.4150 0.4611 0.5146 0.5447
FORMAL 0.4127 0.3744 0.3840 0.4136 0.4592 0.5104 0.5464

∗1=20–49, 2=50–99, 3=100–249, 4=250-499, 5=500-999, 6=1000 and more.

When, for instance, the MA8G anonymisation on trial at the γ = 0.05 level is examined, the
value of 0.3790 printed in bold letters in table 8 – a first risk-averse approximation to the
disclosure risk of useful information – can thus be undercut considerably with 0.1278.
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Fig. 6. Aggregated disclosure risks at the 0.05 level for size classes of employees

As the number of employees rises, the share of correctly assigned enterprises increases on
the one hand, while on the other the share of useful information in the records of these
enterprises falls, so that via the product set up in (6) the observed rise in the hit rate
for large enterprises (see tables 2, 3, 5 and 6) is slowed down. This effect is particularly
obvious with variant MA11G. Here the disclosure risk remains rather constant across the
size classes of employees, and for enterprises with at least 1000 employees it is even below
that of enterprises with 500 to 999 employees, which is due also to the particularly strong
effect of the micro aggregation procedures in intervals containing only small numbers of
values for the variables to be anonymised. If the estimated disclosure risk is below some
balanced second threshold τ , that is,

Pγ(o
(i)disclosed) < τ,

the tested microdata file is defined to be de facto anonymous. At this stage, the data
distributing institution has to select the anonymisation variant with the best analytical
validity among the candidates being de facto anonymous. It is now the task of the data
distributing institutions to discuss suitable thresholds γ and τ . For a risk threshold of 35
per cent (τ = 0.35), in our example the MA1G and MA8G anonymisations on trial at the
γ = 0.05 level could be regarded as de facto anonymous, while the units in the upper size
classes of employees would still have to be modified slightly for variant MA11G.
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9 Aims and scope

On the whole, the general conjecture is confirmed that larger enterprises are easier to re-
identify than smaller ones. In this context, it is fortunately observed that the method of
micro aggregation is more effective for very large enterprises (above a certain total number
of employees). In our application, this inflecting point is lowest for the method of micro
aggregation by 11 groups.

From the theoretical viewpoint, experiments drawing upon additional knowledge taken from
reality always have to be regarded as exemplary. The data distributing institution can never
be 100 per cent sure that a potential data intruder does not have better additional knowledge
at his disposal than the one used for simulation. In order to make concessions to the data
users the present paper proposes an approach accounting for both, scenarios using available
databases for potential data intruders and the worst-case scenario matching the original data
against the anonymised data in order to determine an upper bound for the disclosure risk
associated with the anonymised data.

Regarding the anonymisations considered, the number of true matches obtained by Proce-
dure II is – taking the previously calculated distances as a basis – very near the optimum
solution. Thereby, for the near future, Procedure II, despite its obviously bad worst-case
performance, seems to be a real alternative to more elaborated methods of optimisation.

To handle the matching algorithm, first of all the areas at risk have to be identified within
the data material. In the present paper, size classes of employees have been examined for
that purpose. Furthermore, the analyses have shown that some economic sectors (rows in
table 1) are more insecure than other sectors and require particularly confidential treatment.
Here it seems necessary that branches of economic activity containing only a small number
of values are excluded or aggregated further. In general, the following holds: The coarsening
or exclusion of categorical variables contributes considerably to anonymising and, provided
that the scientist can do without the information thus lost, makes it possible to modify the
numerical variables to a smaller extent. It has turned out, for example, that coarsening the
BBR9 code leads to a marked reduction of the disclosure risk calculated in section 8. Here
we have the case mentioned in subsection 3.2, namely that on the one hand the number of
mismatches within the blocks is reduced through coarsening, while on the other very large
blocks are created making it much more difficult to find true matches.

In the present paper we have studied different degrees of anonymisation of the confidential
data in order to balance the two main objectives “minimisation of the disclosure risk” and
“maximisation of the analytical validity”. Nevertheless, the investigations have to be con-
tinued by testing other anonymisation methods with less influence on the structure of data.
Currently in progress are investigations on the disclosure protection and analytical validity
of data modified by multiplicative and additive noise (Ronning 2004) and different variants
of resampling (Gottschalk 2004).

This work was partially supported by the EU project IST-2000-25069, Computational As-
pects of Statistical Confidentiality, and by the German national project De Facto Anonymi-
sation of Business Microdata.
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Appendix: The German Structure of Costs Survey

The following variables are available in the German structure of costs survey. More infor-
mation about the survey can be found in Statistisches Bundesamt (2005).

1. Branch of economic activity (NACE - Classification of Economic Activities)
2. Type of administrative district (BBR29 code – so-called category 9)
3. Size class of employees
4. Working proprietors
5. Employees (salary and wage earners)
6. Part-time employees
7. Part-time employees in full-time equivalent units
8. Total of active persons
9. Turnover of the unit’s own products
10. Turnover of goods for resale
11. Total turnover (does not correspond to the sum of items 9 and 10)
12. Initial stocks of work in progress and finished products manufactured by the unit mea-
sured against turnover of the unit’s own products
13. Final stocks of work in progress and finished products manufactured by the unit mea-
sured against turnover of the unit’s own products
14. Change in stocks of work in progress and finished products
15. Gross output/production value
16. Initial stocks of raw materials and other intermediary products purchased and consum-
ables, measured against turnover of the unit’s own products
17. Final stocks of raw materials and other intermediary products purchased and consum-
ables, measured against turnover of the unit’s own products
18. Consumption of raw materials
19. Energy consumption
20. Initial stocks of goods for resale measured against turnover of goods for resale
21. Final stocks of goods for resale measured against turnover of goods for resale
22. Input of goods for resale
23. Wages and salaries
24. Statutory social security costs
25. Other social security costs
26. Payments for agency workers
27. Costs of contract processing
28. Repair costs
29. Renting and leasing
30. Other costs
31. Interest on borrowed capital
32. Total costs
33. Value-added at factor cost

2Federal Agency for Construction and Regional Planning
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34. Net value-added at factor cost
35. Total intramural R&D expenditure
36. Total number of R&D personnel
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