Longitudinal Data Analysis

RatSWD Nachwuchsworkshop
Vorlesung von Josef Brüderl
25. August, 2009
Longitudinal Data Analysis

- Traditional definition
 - Statistical methods for analyzing data with a time dimension
 - Trend data, event history data, panel data

- Modern definition (Cameron/Trivedi, Microeconometrics)
 - Cross-sectional analysis: inference from between-subject comparison
 - Longitudinal analysis: inference from within-subject comparison

- According to the modern definition
 - Are trend data always cross-sectional?
 - Is traditional event-history analysis also cross-sectional?
 - Only panel data (repeated observation of the same persons) allow for longitudinal analysis
Panel Data

- Repeated measures of one or more variables on one or more persons

- Macroeconomics, Political Science
 - Unit of analysis: countries
 - N small, T large
 - Repeated cross-sectional time-series

- Microeconomics, Sociology
 - Unit of analysis: persons
 - N large, T small
 - Mostly from panel surveys
 - Also from cross-sectional surveys by retrospective questions
Advantages of Panel Data

- Panel data allow for higher precision
 - Due to the higher number of cases (pooling data, N•T)
 - However, in this respect trend data would be even better

- Panel data allow to study individual dynamics
 - Transitions into and out of states (e.g. poverty)
 - Individual growth curves (e.g. wage, materialism, intelligence)
 - Cohort or age effect?
 - Procedure: including age/cohorts dummies

- They provide information on the time-ordering of events
 - Causal inference gains strength
 - Procedure: careful data preparation (lags)

- They allow for unobserved heterogeneity
 - Procedure: special statistical models (the rest of this lecture)
Panel Data and Causal Inference I

- Counterfactual approach to causality (Rubin’s model)
 \[Y_{i,t_0}^T - Y_{i,t_0}^C \]

- With cross-sectional data (between estimation)
 \[Y_{i,t_0}^T - Y_{j,t_0}^C \]
 - Assumption of unit homogeneity (no unobserved heterogeneity)
 - Assumption of conditional independence (no reverse causality)

- With panel data I (within estimation)
 \[Y_{i,t_1}^T - Y_{i,t_0}^C \]
 - Problem: period effects, maturation

- With panel data II (difference-in-differences estimator, DID)
 \[(Y_{i,t_1}^T - Y_{i,t_0}^C) - (Y_{j,t_1}^C - Y_{j,t_0}^C) \]
Panel Data and Causal Inference II

<table>
<thead>
<tr>
<th>The two major problems in Social Research</th>
<th>Solution with experimental design</th>
<th>Solution with panel design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-selection (leading to unobserved heterogeneity)</td>
<td>Randomization</td>
<td>Within estimation (before-after comparison)</td>
</tr>
<tr>
<td>Reverse Causality (treatment depends on Y)</td>
<td>Controlled treatment</td>
<td>No simple solution (e.g. no time-varying unobserved heterogeneity)</td>
</tr>
</tbody>
</table>

- With panel data we can tackle one of the two major problems of Social Research
Panel Data and Causal Inference III

- **No self-selection**
 - Bivariate analysis suffices

- **Self-selection only on observables**
 - Cross-sectional regression provides unbiased estimates
 - Even better: Cross-sectional propensity-score matching

- **Self-selection also on unobservables**
 - Cross-sectional IV-estimation provides unbiased estimates under very strong assumptions
 - Panel regression (fixed-effects regression) provides unbiased estimates under much weaker assumptions
Example: Marriage-Premium for Men?

- Fabricated data (“Wage Premium.dta”): long-format

```
. list id time wage marr, separator(6)

<table>
<thead>
<tr>
<th>id</th>
<th>time</th>
<th>wage</th>
<th>marr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1050</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>950</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1100</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>900</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1950</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2050</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1950</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2050</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>time</th>
<th>wage</th>
<th>marr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2900</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>3000</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>3100</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>3500</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>3450</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>3550</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>3950</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>4050</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>4000</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>4500</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>4600</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>4400</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Example: Marriage-Premium for Men?

There is a causal effect:
- a marriage-premium

And there is selectivity:
- Only high wage men marry
Example: Computing the Marriage-Premium

- These data are like experimental data
 - Treatment and control group
 - Before-after comparison
- Compute the DID-estimator
 \[
 \frac{(4500 - 4000) + (3500 - 3000)}{2} - \frac{(2000 - 2000) + (1000 - 1000)}{2} = 500
 \]
- The marriage-premium is 500 €
- Within-person comparison (the before-after difference)
- To rule out the possibility of maturation or period effects we compare the within-difference of married (treatment) and unmarried (control) men
The Fundamental Problem of Non-Experimental Research

- Result of a cross-sectional regression at T=4:
 \[y_{i4} = \beta_0 + \beta_1 x_{i4} + u_{i4} \]
 - Between-comparison: compare wages of married and unmarried men
 \[\hat{\beta}_1 = \frac{4500 + 3500}{2} - \frac{2000 + 1000}{2} = 2500 \]

- A cross-sectional regression is highly misleading!
 - The bias is due to unobserved heterogeneity
 • High-wage men self-select into marriage
 - Technically: endogeneity (x_{i4} and u_{i4} are correlated)

- Self-selection is the fundamental problem of non-experimental research
 - Most cross-sectional regression results are therefore highly disputable!
No Solution: Pooled-OLS

- Pool the data and estimate an OLS regression (POLS)
 \[y_{it} = \beta_0 + \beta_1 x_{it} + u_{it} \]

- The result is \(\hat{\beta}_1 = 1833 \)
 - This is the mean of the red points minus the mean of the green points
 - The bias is still heavy
 - POLS also relies on a between comparison. It is thus biased due to unobserved heterogeneity: \(x_{it} \) and \(u_{it} \) are correlated

- Panel data per se do not remedy the problem of unobserved heterogeneity!
 - One has to use appropriate methods of analysis
A Solution: Panel Data and Within-Estimation

- One has to construct a regression model that relies on the before-after comparison (like DID)
- Starting point: error-components model
 - Person-specific error v_i, idiosyncratic error ε_{it}
 \[u_{it} = v_i + \varepsilon_{it} \]
 - Error-components model
 \[y_{it} = \beta_1 x_{it} + v_i + \varepsilon_{it} \]
 - v_i represents person-specific time-constant unobserved heterogeneity (fixed-effects)
 (in our example v_i could be unobserved ability)
- Pooled-OLS has to assume that x_{it} is uncorrelated with both error-components
Fixed-Effects Regression

- How can we get rid of the fixed-effects?
- Within transformation
 - “Time-demeaning” the data
 \[y_{it} = \beta_1 x_{it} + \nu_i + \varepsilon_{it} \quad (1) \]
 Average over \(t \) for each \(i \)
 \[\bar{y}_i = \beta_1 \bar{x}_i + \nu_i + \bar{\varepsilon}_i \quad (2) \]
 Subtract \((2) \) from \((1) \)
 \[y_{it} - \bar{y}_i = \beta_1 (x_{it} - \bar{x}_i) + \varepsilon_{it} - \bar{\varepsilon}_i \quad (3) \]
 - Only within variation is left
 - Pooled OLS (FE-estimator) unbiased, if \(\text{Cov}(x_{it}, \varepsilon_{it}) = 0 \)
 - However, \(\text{Cov}(x_{it}, \nu_i) \neq 0 \) is allowed
 Time-constant unobserved heterogeneity is no longer a problem
Example: Fixed-Effects Regression

```
. xtreg wage marr, fe

Fixed-effects (within) regression               Number of obs  =  24
Group variable: id                              Number of groups =  4

R-sq:  within  = 0.8982                         Obs per group: min =  6
        between = 0.8351                      avg  = 6.0
        overall = 0.4065                     max  =  6

F(1,19)         =    167.65                      F(1,19)         = 167.65
corr(u_i, Xb)  = 0.5164                         Prob > F        = 0.0000

------------------------------------------------------------------------------
      wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   marr       |        500   38.61642    12.95   0.000     419.1749    580.8251
    _cons     |       2500    16.7214   149.51   0.000     2465.002    2534.998
-------------+----------------------------------------------------------------
 sigma_u     |  1290.9944
 sigma_e     |   66.885605
        rho   |    .99732298 (fraction of variance due to u_i)
------------------------------------------------------------------------------
```
“Mechanics” of a FE-Regression

- Those, never marrying are at $X=0$. They contribute nothing to the regression.
- The slope is determined by the wages of those marrying only:
 It is the difference in the mean wage before and after marriage.
Summary of FE-Estimation

- Panel data and within estimation (DID, FE-regression) can remedy the problem of unobserved heterogeneity.

- However, with FE-regressions we cannot estimate the effects of time-constant covariates. These are all cancelled out by the within transformation.

- This reflects the fact that panel data do not help to identify the causal effect of a time-constant covariate!

- The "within logic" applies only with time-varying covariates:
 - Something has to “happen” (the effects of events)
 - Only then a before-after comparison is possible
An Example: Male Marital Wage Premium

- Mikrozensus Panel 1996-1999 (Campus-File)
- Analysesample
 - Balanced Sample: nur Personen mit 4 Beobachtungen (bis auf MV)
 - Männer, die 1996 18-40 Jahre alt sind und 1996 ledig sind
- Abhängige Variable
 - Natürlicher Logarithmus des Netto-Monatslohnes (Intervallmitte imputiert)
- Unabhängige Variable
 - Heirats-Dummy (Verheiratet)
- Kontrollvariablen
 - Alterseffekt: Alter und Alter²
 - Periodeneffekt: Jahres-Dummies
- Panel-robuste Standardfehler
An Example: Male Marital Wage Premium

<table>
<thead>
<tr>
<th></th>
<th>POLS</th>
<th>RE-Modell</th>
<th>FE-Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verheiratet</td>
<td>0.19***</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Alter</td>
<td>0.30***</td>
<td>0.30***</td>
<td>0.31***</td>
</tr>
<tr>
<td>Alter² / 100</td>
<td>-0.42***</td>
<td>-0.43***</td>
<td>-0.42***</td>
</tr>
<tr>
<td>Personen</td>
<td>712</td>
<td>712</td>
<td>712</td>
</tr>
<tr>
<td>Personenjahre</td>
<td>2636</td>
<td>2636</td>
<td>2636</td>
</tr>
<tr>
<td>R²</td>
<td>0.28</td>
<td>0.11</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Further Readings

- Lecture Notes by Josef Brüderl on Panel and EH Analysis
 - http://www.sowi.uni-mannheim.de/lessm/lehre.html

- Textbooks

- Panel Data Analysis

- EHA with repeated events