Child-Related Career Breaks and the Evolution of Occupations and Tasks over the Life-Cycle

Holger Stichnoth¹
Hans-Martin von Gaudecker²

¹ZEW Mannheim ²University of Bonn

FDZ-Nutzertagung, Bonn, 3 November 2015

 Women take longer care-related career breaks and work more often in part-time jobs than men

- Women take longer care-related career breaks and work more often in part-time jobs than men
- Consequences for earnings, wages, bargaining power
 - SOEP: e.g., Beblo/Wolf (2002), Boll (2009)

- Women take longer care-related career breaks and work more often in part-time jobs than men
- Consequences for earnings, wages, bargaining power
 - SOEP: e.g., Beblo/Wolf (2002), Boll (2009)
 - ► IABS: Erjnæs/Kunze (2013), Schönberg/Ludsteck (2014)

- Women take longer care-related career breaks and work more often in part-time jobs than men
- Consequences for earnings, wages, bargaining power
 - SOEP: e.g., Beblo/Wolf (2002), Boll (2009)
 - ► IABS: Erjnæs/Kunze (2013), Schönberg/Ludsteck (2014)
- This paper: How does the task-profile of occupations change due to child-related career breaks?

- Women take longer care-related career breaks and work more often in part-time jobs than men
- Consequences for earnings, wages, bargaining power
 - SOEP: e.g., Beblo/Wolf (2002), Boll (2009)
 - ► IABS: Erjnæs/Kunze (2013), Schönberg/Ludsteck (2014)
- ► This paper: How does the *task-profile of occupations* change due to child-related career breaks?
- Data: BASiD + BIBB Qualifications & Career Survey

► In the economics literature, not much known about how occupations and tasks evolve *over the lifecycle*

- In the economics literature, not much known about how occupations and tasks evolve over the lifecycle
- Focus mostly on changes over time and consequences for aggregate wage distribution (e.g., Black and Spitz-Oener 2010)

- ► In the economics literature, not much known about how occupations and tasks evolve *over the lifecycle*
- Focus mostly on changes over time and consequences for aggregate wage distribution (e.g., Black and Spitz-Oener 2010)
- Existing lifecycle studies only for men (Gathmann and Schönberg 2010, Yamaguchi 2010)

Joint effort of RDC's of IAB and DRV-Bund

- Joint effort of RDC's of IAB and DRV-Bund
 - ► VSKT 2007, cohorts 1940–1977

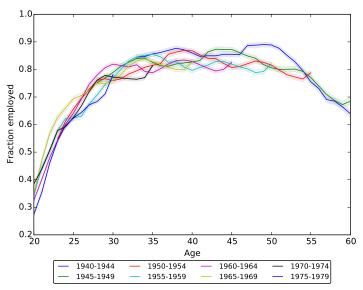
- Joint effort of RDC's of IAB and DRV-Bund
 - VSKT 2007, cohorts 1940–1977
 - ► IAB: Employment records, UI benefits, training, occupation

- Joint effort of RDC's of IAB and DRV-Bund
 - VSKT 2007, cohorts 1940–1977
 - ► IAB: Employment records, UI benefits, training, occupation
- ► First time that fertility and labour market history are available in large dataset (n=568.468)

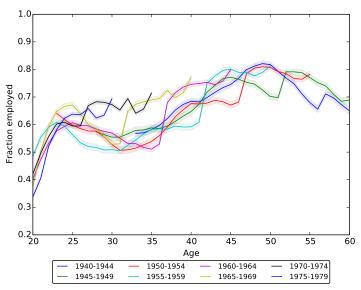
- Joint effort of RDC's of IAB and DRV-Bund
 - VSKT 2007, cohorts 1940–1977
 - ► IAB: Employment records, UI benefits, training, occupation
- First time that fertility and labour market history are available in large dataset (n=568.468)
- But: limited information on hours; no household context; education variable noisy; top coding at SSC threshold

► Employment

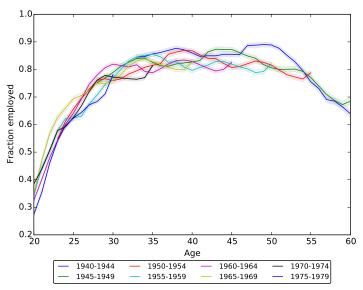
- Employment
- Full-time employment (conditional)

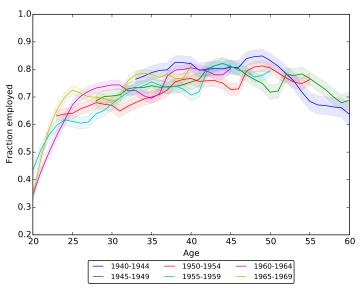

- Employment
- Full-time employment (conditional)
- Annual earnings (unconditional)

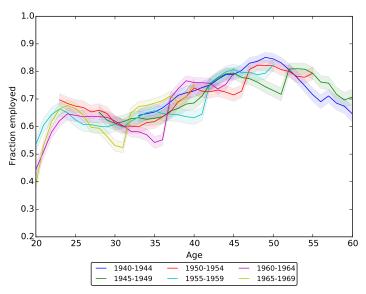
- Employment
- Full-time employment (conditional)
- Annual earnings (unconditional)
- ► (i) Men, women (ii) men, women by completed fertility

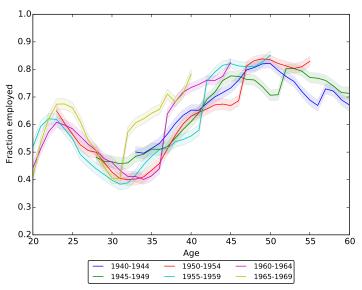

- Employment
- Full-time employment (conditional)
- Annual earnings (unconditional)
- ► (i) Men, women (ii) men, women by completed fertility

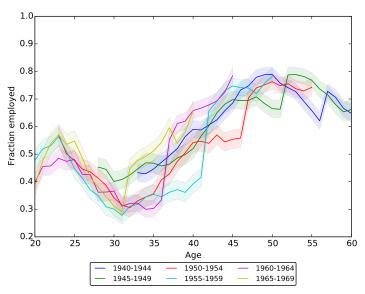
Large dataset → precise estimates even by cohort and subgroup

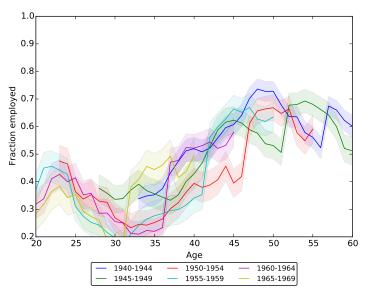

Employment, men

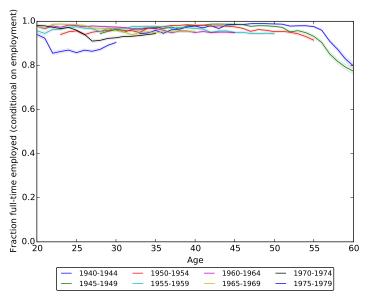

Employment, women

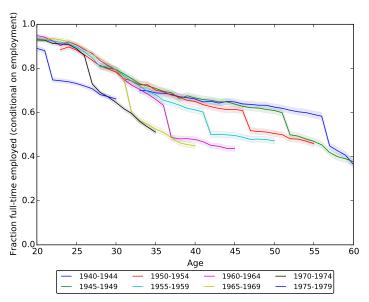

Employment, men

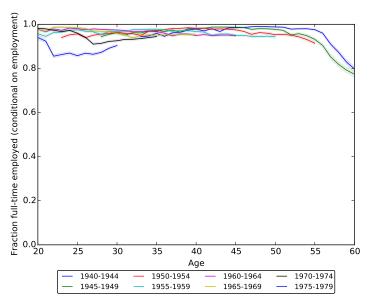

Employment, women, no children

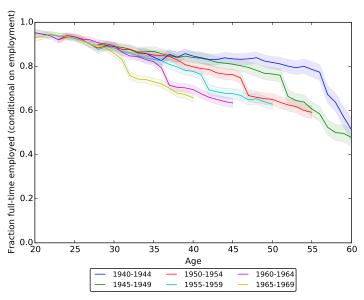

Employment, women, 1 child

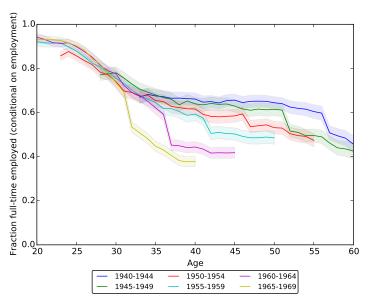

Employment, women, 2 children

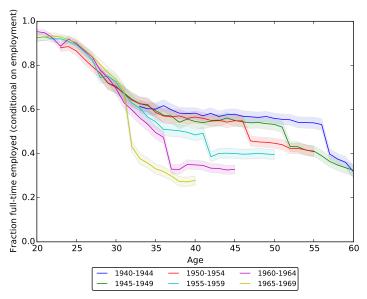

Employment, women, 3 children

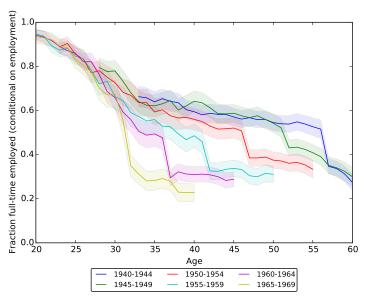

Employment, women, 4 or more children

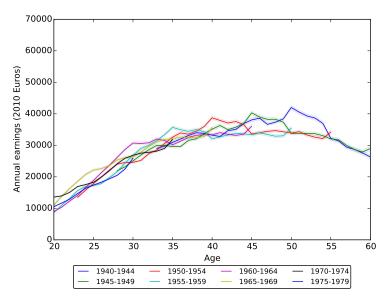

Full time employment, men

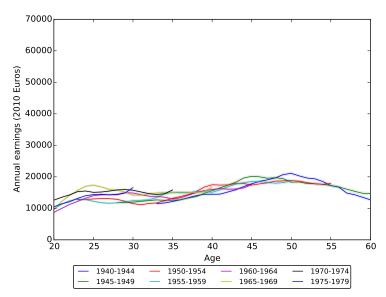

Full time employment, women

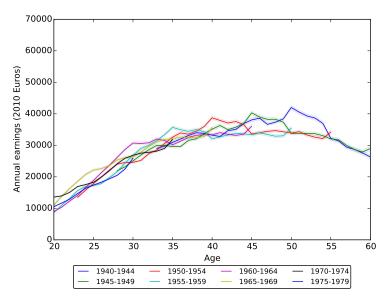

Full time employment, men

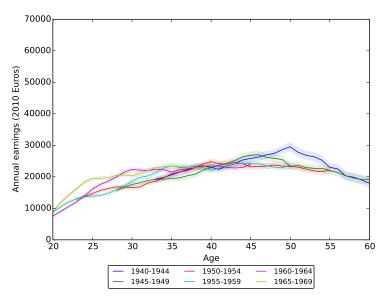

Full time employment, women, no children

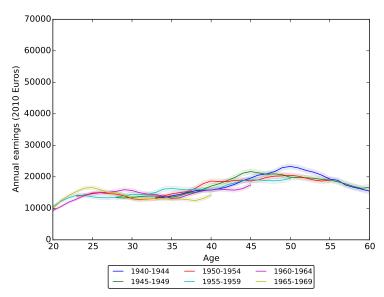

Full time employment, women, 1 child

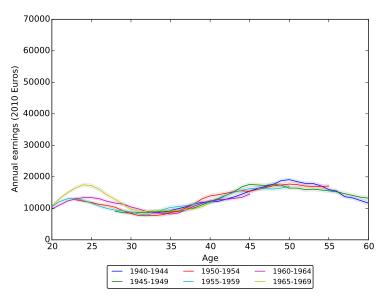

Full time employment, women, 2 children

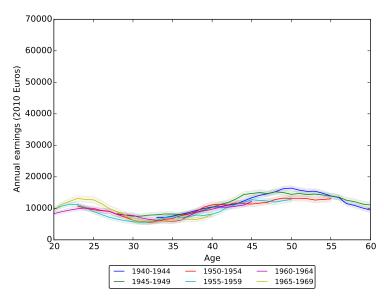

Full time employment, women, 3 children


Earnings, men


Earnings, women


Earnings, men


Earnings, women, no children


Earnings, women, 1 child

Earnings, women, 2 children

Earnings, women, 3 children

 Compare (age- and year-adjusted) outcomes with year before first birth; comparisons within the treatment group only

$$Y_{ist} = \sum_{t \neq -1} \alpha_t \cdot EVENT_{it} + \sum_j \beta_j \cdot AGE_{is}^j + \sum_s \gamma_s \cdot YEAR_s + \nu_{ist},$$

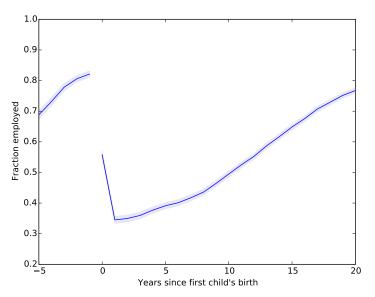
 Compare (age- and year-adjusted) outcomes with year before first birth; comparisons within the treatment group only

$$Y_{ist} = \sum_{t \neq -1} \alpha_t \cdot EVENT_{it} + \sum_j \beta_j \cdot AGE_{is}^j + \sum_s \gamma_s \cdot YEAR_s + \nu_{ist},$$

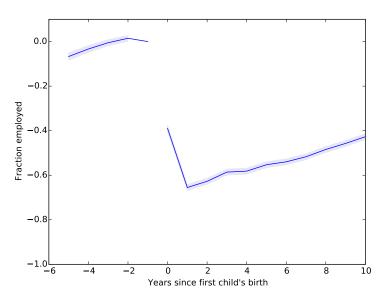
Event time t = 0 is year of first birth; i denotes individuals and s calendar time

 Compare (age- and year-adjusted) outcomes with year before first birth; comparisons within the treatment group only

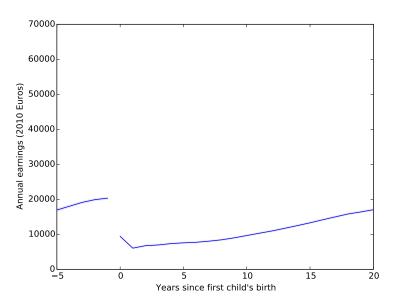
$$Y_{ist} = \sum_{t \neq -1} \alpha_t \cdot EVENT_{it} + \sum_j \beta_j \cdot AGE_{is}^j + \sum_s \gamma_s \cdot YEAR_s + \nu_{ist},$$

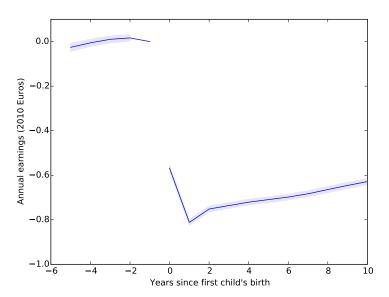

- Event time t = 0 is year of first birth; i denotes individuals and s calendar time
- ▶ Penalty: $P_t \equiv \hat{\alpha}_t / E[\hat{Y}_{ist} \mid t]$, where \hat{Y}_{ist} is the prediction without the penalty (i.e., for $\alpha_{-1} \equiv 0$).

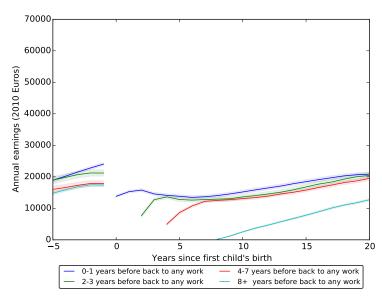
 Compare (age- and year-adjusted) outcomes with year before first birth; comparisons within the treatment group only

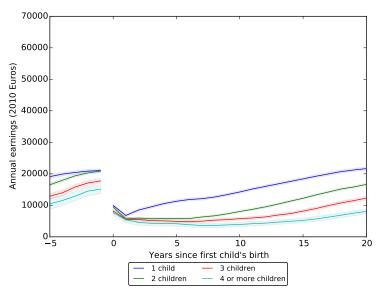

$$Y_{ist} = \sum_{t \neq -1} \alpha_t \cdot EVENT_{it} + \sum_j \beta_j \cdot AGE_{is}^j + \sum_s \gamma_s \cdot YEAR_s + \nu_{ist},$$

- Event time t = 0 is year of first birth; i denotes individuals and s calendar time
- ▶ Penalty: $P_t \equiv \hat{\alpha}_t / E[\hat{Y}_{ist} \mid t]$, where \hat{Y}_{ist} is the prediction without the penalty (i.e., for $\alpha_{-1} \equiv 0$).
- Unlike Kleven, Landais, and Søgaard (2015), cannot compare penalties for men and women as no fertility info for men in BASiD data


Levels of employment


Child penalty for employment


Levels of annual earnings


Child penalty for annual earnings

Levels of annual earnings

Levels of annual earnings

► BASiD data confirm lifecycle divergence of employment, full-time employment and earnings between men and women

- BASiD data confirm lifecycle divergence of employment, full-time employment and earnings between men and women
- Child penalties huge compared with Denmark (Kleven et al.)

- BASiD data confirm lifecycle divergence of employment, full-time employment and earnings between men and women
- Child penalties huge compared with Denmark (Kleven et al.)
 - Participation: 50% vs. 10%

- BASiD data confirm lifecycle divergence of employment, full-time employment and earnings between men and women
- Child penalties huge compared with Denmark (Kleven et al.)
 - Participation: 50% vs. 10%
 - Unconditional earnings: 70% vs. 20%

- BASiD data confirm lifecycle divergence of employment, full-time employment and earnings between men and women
- Child penalties huge compared with Denmark (Kleven et al.)
 - Participation: 50% vs. 10%
 - Unconditional earnings: 70% vs. 20%
- Size of penalty related to length of break and # of children

- BASiD data confirm lifecycle divergence of employment, full-time employment and earnings between men and women
- Child penalties huge compared with Denmark (Kleven et al.)
 - Participation: 50% vs. 10%
 - Unconditional earnings: 70% vs. 20%
- Size of penalty related to length of break and # of children
 - Some differences apparent already before 1st birth

► BIBB Qualifications & Career Survey

- BIBB Qualifications & Career Survey
- ▶ 6 repeated cross sections from 1979 2012

- BIBB Qualifications & Career Survey
- 6 repeated cross sections from 1979 2012
- Employees were asked what tasks they perform, e.g.: "How often do you repair things?"

- BIBB Qualifications & Career Survey
- 6 repeated cross sections from 1979 2012
- Employees were asked what tasks they perform, e.g.: "How often do you repair things?"
- Match with BASiD data on 120 occupations

nonroutine analytical

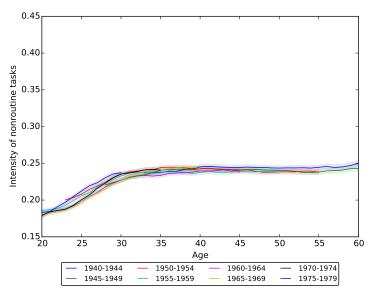
- nonroutine analytical
 - e.g., researching and analyzing

- nonroutine analytical
 - e.g., researching and analyzing
- nonroutine interactive

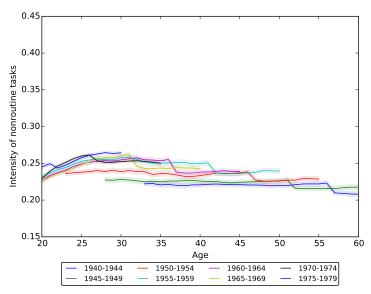
- nonroutine analytical
 - e.g., researching and analyzing
- nonroutine interactive
 - e.g., managing and organizing

- nonroutine analytical
 - e.g., researching and analyzing
- nonroutine interactive
 - e.g., managing and organizing
- routine cognitive

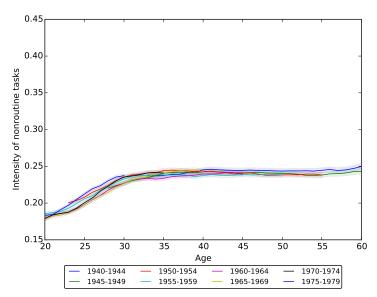
- nonroutine analytical
 - e.g., researching and analyzing
- nonroutine interactive
 - e.g., managing and organizing
- ▶ routine cognitive
 - e.g., calculating and bookkeeping

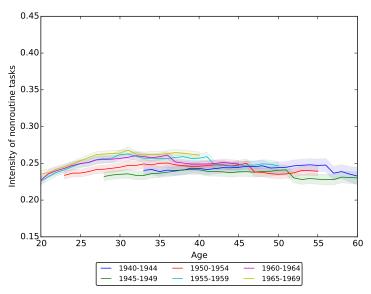

- nonroutine analytical
 - e.g., researching and analyzing
- nonroutine interactive
 - e.g., managing and organizing
- ▶ routine cognitive
 - e.g., calculating and bookkeeping
- routine manual

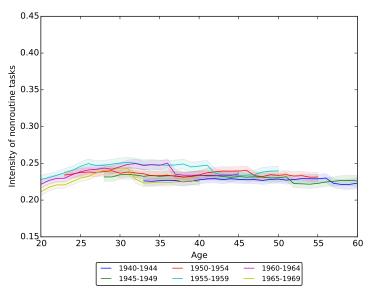
- nonroutine analytical
 - e.g., researching and analyzing
- nonroutine interactive
 - e.g., managing and organizing
- routine cognitive
 - e.g., calculating and bookkeeping
- routine manual
 - e.g., operating machinery

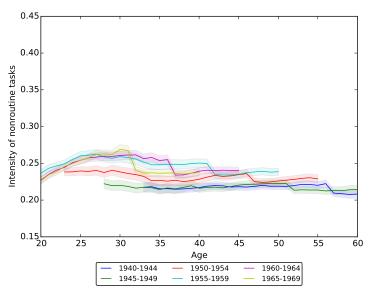

- nonroutine analytical
 - e.g., researching and analyzing
- nonroutine interactive
 - e.g., managing and organizing
- routine cognitive
 - e.g., calculating and bookkeeping
- routine manual
 - e.g., operating machinery
- nonroutine manual

- nonroutine analytical
 - e.g., researching and analyzing
- nonroutine interactive
 - e.g., managing and organizing
- routine cognitive
 - e.g., calculating and bookkeeping
- routine manual
 - e.g., operating machinery
- nonroutine manual
 - e.g., serving and repairing

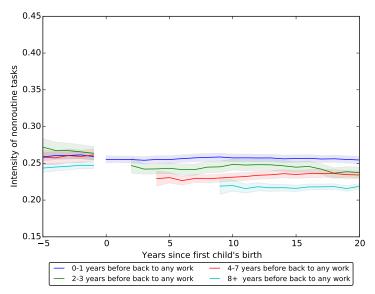

Nonroutine tasks, men

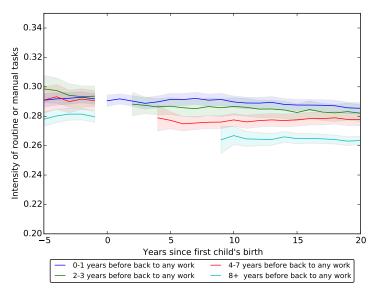

Nonroutine tasks, women


Nonroutine tasks, men


Nonroutine tasks, women, no children

Nonroutine tasks, women, 1 child


Nonroutine tasks, women, 2 children


Nonroutine tasks, women, 3 children

Levels of nonroutine tasks

Levels of routine or manual tasks

 After birth of 1st child, women less often in nonroutine occ. (also: less often routine cognitive, not shown here)

- After birth of 1st child, women less often in nonroutine occ. (also: less often routine cognitive, not shown here)
 - Bigger change for longer breaks

- After birth of 1st child, women less often in nonroutine occ. (also: less often routine cognitive, not shown here)
 - Bigger change for longer breaks
- Likely to be one channel behind wage divergence

- After birth of 1st child, women less often in nonroutine occ. (also: less often routine cognitive, not shown here)
 - Bigger change for longer breaks
- Likely to be one channel behind wage divergence
 - (Increasing) wage penalty as routine tasks more easily automated (Autor, Levy, Murnane 2003, Spitz-Oener 2006)

- After birth of 1st child, women less often in nonroutine occ. (also: less often routine cognitive, not shown here)
 - Bigger change for longer breaks
- Likely to be one channel behind wage divergence
 - (Increasing) wage penalty as routine tasks more easily automated (Autor, Levy, Murnane 2003, Spitz-Oener 2006)
- Then why the change away from nonroutine and cognitive occ.?

- After birth of 1st child, women less often in nonroutine occ. (also: less often routine cognitive, not shown here)
 - Bigger change for longer breaks
- Likely to be one channel behind wage divergence
 - (Increasing) wage penalty as routine tasks more easily automated (Autor, Levy, Murnane 2003, Spitz-Oener 2006)
- Then why the change away from nonroutine and cognitive occ.?
 - Skill depreciation, difficulty to return into old occupation (esp. if break > PL)?

- After birth of 1st child, women less often in nonroutine occ. (also: less often routine cognitive, not shown here)
 - Bigger change for longer breaks
- Likely to be one channel behind wage divergence
 - (Increasing) wage penalty as routine tasks more easily automated (Autor, Levy, Murnane 2003, Spitz-Oener 2006)
- Then why the change away from nonroutine and cognitive occ.?
 - Skill depreciation, difficulty to return into old occupation (esp. if break > PL)?
 - ► Routine tasks more amenable to part-time work (Goldin 2014)?

- After birth of 1st child, women less often in nonroutine occ. (also: less often routine cognitive, not shown here)
 - Bigger change for longer breaks
- Likely to be one channel behind wage divergence
 - (Increasing) wage penalty as routine tasks more easily automated (Autor, Levy, Murnane 2003, Spitz-Oener 2006)
- Then why the change away from nonroutine and cognitive occ.?
 - Skill depreciation, difficulty to return into old occupation (esp. if break > PL)?
 - Routine tasks more amenable to part-time work (Goldin 2014)?
- "Verwertung von Bildung und Beruf" what role for public policy?

Quantify how these task changes translate into wages

- Quantify how these task changes translate into wages
 - Introduce tasks, skills and their interaction into wage equation

- Quantify how these task changes translate into wages
 - Introduce tasks, skills and their interaction into wage equation
- Take selection into account by modelling employment and fertility choices in a lifecycle framework

- Quantify how these task changes translate into wages
 - Introduce tasks, skills and their interaction into wage equation
- Take selection into account by modelling employment and fertility choices in a lifecycle framework
- Use the model for counterfactual policy analyses

- Quantify how these task changes translate into wages
 - Introduce tasks, skills and their interaction into wage equation
- Take selection into account by modelling employment and fertility choices in a lifecycle framework
- Use the model for counterfactual policy analyses
 - Parental leave, parental benefits, income tax splitting, spousal coinsurance, Minijobs, ...