Tasks, Employment and Wages

An Analysis of the German Labor Market from 1979 to 2012

Anna Katharina Pikos ¹ Stephan L. Thomsen ²

¹Institute of Labor Economics Leibniz University of Hannover

 2 NIW Hannover & Leibniz University of Hannover

November 3, 2015

Motivation

- German labor market experienced similar development to the U.S. in terms of wage inequality and polarization Spitz-Oener (2006) and Dustmann et al. (2009)
- wage inequality started to rise in the 1980s and 1990s skill-biased technological change (SBTC) hypothesis
- non-monotonous relationship for the U.S. in 1990s polarization, Autor et al. (2003)
- evidence from other countries
 - Germany: employment polarization 1979 to 1999 (Spitz-Oener, 2006)
 - UK (Goos and Manning, 2007)

Motivation II

- recent works questioned general validity of polarization hypothesis
 - demand for cognitive tasks reversed after 2000 (Beaudry et al., 2013)
 - even in the U.S., wage polarization occurred only in one or two decades non-monotonic relationship not for Canada (Green and Sand, 2014)
- German labor market underwent significant changes since 2000 fundamental reforms designed to cut the high and persistent unemployment of the 1990s and early 2000s
- industry structure moved towards services
- wage moderation kept labor costs down and contributed to a steady rise of productivity
- => Germany moved from being "the sick man of Europe" to becoming an "economic superstar" (Dustmann et al., 2014)

Research Questions

1. Has job polarization continued after 2000? extend and update the analysis provided by Spitz-Oener (2006) that ends in 1999, taking account of the findings of Beaudry et al. (2013)

2. Do wages display a polarized pattern?

- U.S. wage polarization an exception instead of a general pattern of developed countries?
- Germany particularly interesting object of study (more regulated by institutions than the liberal U.S. or Canadian labor market)

Data

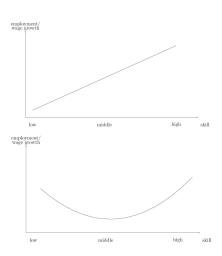
- occupation panel data set from six large-scale surveys carried out between 1979 and 2012
- detailed information on activities performed during work, sociodemographic, personal, job-related and company-related topics

Key Results

1. employment polarization 1979 to 1999 reversed pattern 1999 to 2012

- non-routine tasks substituted routine tasks from 1979 to 1999
- employment growth for routine tasks but employment losses for non-routine tasks after 1999 (in line with Beaudry et al., 2013)
- non-routine tasks much more important today than in 1979 but routine tasks continue to be performed by still a large and significant share of people

2. work complexity has risen


3. no strong indications for wage polarization in Germany

- wages for all tasks have grown since 1979
- after 1999, hourly wages stayed virtually constant (wage moderation)
- small polarization in the wage structure can be found for 1999 to 2012

Framework

Skill-Biased Technological Change

- technological change
 - complements high skilled labor
 - substitutes low skilled labor
- "nuanced version" evidence for non-monotonicity
 - employment growth in high and low skilled occupations
 - employment decrease in middle skilled occupations
- hollowing-out, polarization

Technology in the "nuanced version" of SBTC

Autor et al. (2003)

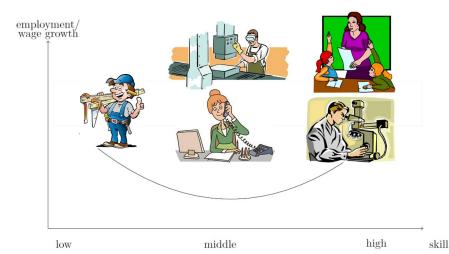
- technology affects labor market through tasks workers perform
- two kinds of tasks
 - routine: limited in scope and well-defined, easily expressible in computer code; substitutes
 - non-routine: problem-solving and more comprehensive communication; complements
- most occupations include both routine and non-routine
- => SBTC affected task composition of jobs rather than substituting whole occupations

Task Categories as in Autor et al (2003)

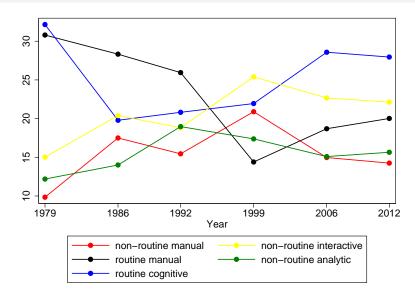
 Non-routine manual repair, renovate, restore, nurse

 Routine manual operate, control machines

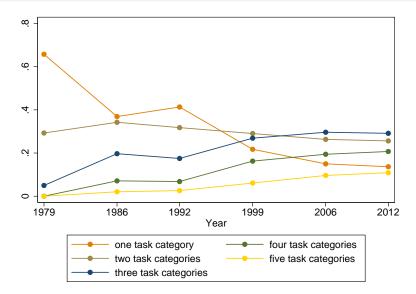
Task Categories as in Autor et al (2003)


- Routine cognitive calculating, measuring, book-keeping
- Non-routine interactive negotiate, teach, entertain, manage personnel
- Non-routine analytic research, evaluation, planning, interpret rules

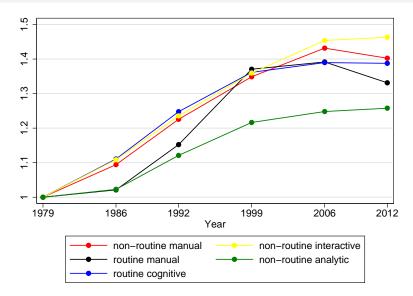
Task Categories


Pikos, Thomsen (LUH, NIW)

Empirical Analysis


Data: Qualification and Career Survey (Erwerbstätigenbefragung)

- six cross sections: 1979, 1985/6, 1991/2, 1998/9, 2006, 2012 8112 < n < 20,438
- "quasi panel" over occupations
 1988 Federal Statistical Office's Classification of Occupations
- sample restictions
 - West German residents with German nationality
 - aged between 16 and 65
 - excluding self-employed, employees in the public sector, private households, unemployed
- dummy variables for each task category
- sociodemographic, personal, job-related and company-related variables


Task Employment in %

Complexity Development, shares: 0.2=20%

Wages by Tasks index; 1979=1

Polarization?

	employment			hourly wage			
	79-99	99-12	79-12	79-99	99-12	79-12	
nrm	112.31	-31.80	44.81	34.86	3.99	40.24	
rm	-53.28	39.10	-35.01	37.06	-2.87	33.13	
rc	-31.77	27.40	-13.07	36.15	1.92	38.77	
nri	69.17	-12.87	47.39	35.95	7.61	46.30	
nra	42.58	-9.95	28.40	21.64	3.39	25.77	

(n)rm: (non-)routine manual, rc: routine cognitive, nri: non-routine interactive, nra: non-routine analytic

- employment but no wage polarization from 1979 to 1999
- "reversed" employment polarization from 1999 to 2012 Beaudry et al., 2013
- weak wage polarization from 1999 to 2012

Estimation Strategy

$$Y_{ot} = TI'_{ot}\beta + X'_{ot}\gamma + \alpha_0 + u_{ot}.$$
 (1)

- Y_{ot} : occupation o's log hourly wage in a given year t
- Tl_{ot}: task dummies
- X_{ot}: control variables (time dummies, sociodemographic and company characteristics)

interpretation of coefficient of interest β

- cross-section models: task measures (between 0 and 1) if task category is performed (=1), wage changes by $\beta*100~\%$
- panel model: task dummies 10ppt change in task measure (0.1), wage changes by $\beta*10~\%$

Panel Models

model	non-routine manual	routine manual	routine cognitive	non-routine interactive	non-routine analytic		
			full period				
1	0.054	0.057	0.156***	0.222***	0.147**		
	(0.041)	(0.061)	(0.036)	(0.068)	(0.065)		
2	0.053	-0.008	0.054	0.046	0.023		
	(0.036)	(0.045)	(0.041)	(0.065)	(0.059)		
3	0.023	-0.063	0.055	-0.074	0.037		
	(0.045)	(0.047)	(0.047)	(0.075)	(0.073)		
	first period, 1979-1999						
1	0.016	-0.104**	0.120***	0.365***	0.084		
	(0.035)	(0.041)	(0.038)	(0.062)	(0.070)		
2	-0.038	-0.122***	0.050	0.213***	-0.075		
	(0.027)	(0.038)	(0.037)	(0.057)	(0.062)		
3	-0.055	-0.136***	0.093*	0.138	-0.018		
	(0.055)	(0.049)	(0.049)	(0.106)	(0.105)		
		secon	nd period, 1999-2	2012			
1	-0.060	0.090	-0.003	0.062	0.236*		
	(0.107)	(0.085)	(0.106)	(0.166)	(0.129)		
2	0.001	0.018	-0.058	0.040	0.069		
	(0.094)	(0.077)	(0.101)	(0.128)	(0.101)		
3	-0.003	0.126	-0.103	-0.032	-0.042		
	(0.081)	(0.077)	(0.093)	(0.108)	(0.101)		

 ${\bf Data\ sources:\ IAB,\ BIBB,\ BAuA.}$

Cross-Section Models

year	model	non-routine manual	routine manual	routine cognitive	non-routine interactive	non-routine analytic
1979	1	-0.038***	-0.004	0.062***	-0.041***	0.305***
		(0.011)	(0.010)	(0.010)	(0.011)	(0.011)
	2	-0.048***	-0.093***	0.051***	0.000	0.139***
		(0.010)	(0.010)	(0.009)	(0.010)	(0.010)
1986	1	0.104***	-0.072***	0.067***	-0.025**	0.247***
		(0.010)	(0.011)	(0.012)	(0.010)	(0.012)
	2	0.024**	-0.077***	0.071***	0.042***	0.114***
		(0.011)	(0.012)	(0.013)	(0.011)	(0.013)
1992	1	0.101***	-0.043***	0.063***	-0.038***	0.266***
		(0.011)	(0.011)	(0.012)	(0.010)	(0.011)
	2	0.004	-0.064***	0.042***	0.035***	0.137***
		(0.012)	(0.011)	(0.011)	(0.010)	(0.011)
1999	1	-0.110***	0.037***	0.133***	-0.008	0.208***
		(0.010)	(0.012)	(0.011)	(0.011)	(0.012)
	2	-0.048***	-0.019*	0.051***	0.030***	0.116***
		(0.010)	(0.011)	(0.010)	(0.011)	(0.011)
2006	1	-0.085***	-0.113***	0.110***	0.042***	0.194***
		(0.014)	(0.014)	(0.017)	(0.014)	(0.013)
	2	-0.038***	-0.083***	0.047***	0.079***	0.090***
		(0.011)	(0.011)	(0.014)	(0.011)	(0.011)
2012	1	-0.080***	-0.206***	0.076***	0.031**	0.200***
		(0.013)	(0.013)	(0.016)	(0.014)	(0.012)
	2	-0.039***	-0.097***	0.038***	0.071***	0.106***
		(0.011)	(0.010)	(0.013)	(0.011)	(0.010)

Polarization?

- non-routine manual tasks mostly lead to wage decreases X
- routine cognitive tasks increase wages X
- wage penalties for routine manual task performances √
- large wage increases for non-routine analytic tasks √

Alternative Task Measures

task measures for each individual i in t and task category j

• Spitz-Oener (2006)

$$TI_{ijt}^{SO} = \frac{\text{number of activities in category j performed by i in t}}{\text{total number of activities in category j at time t}}$$
 (2)

Antonczyk et al. (2009)

$$TI_{ijt}^{AFL} = \frac{\text{number of activities in category } j \text{ performed by } i \text{ in } t}{\text{total number of activities performed by } i \text{ at time } t}$$
 (3)

=> Results are robust to alternative task measures

Discussion

Questions

- 1. Why did the initial employment polarization reverse after 1999?
- 2. Why was the initial employment polarization not accompanied by a similar polarization of the wage structure?

Reversed employment polarization after 1999: demand reversal for (non-routine) cognitive tasks Beaudry et al., 2013

- 1. 1979 to 1999: computer technology diffused throughout the economy
 - demand for non-routine cognitive tasks ↑
 - non-routine analytic tasks demanded to make full use of the immense analysis opportunities
 - non-routine interactive tasks demanded to intensify communication between all economic actors
 - computers could replace many routine cognitive tasks ↓
 - routine manual tasks ↓ replaced by technology that had to be maintained and repaired (non-routine manual tasks ↑)
- 2. after 1999: process of adaptation completed
 - demand for non-routine tasks stopped to rise, while supply still continued to rise
 - work content changed substantial part of the non-routine tasks during the adaptation process became routine
- Pikos, Thomsen (LUH, NIW)

The (declining) role of labor unions in the wage setting process

- unions do not focus on increasing the wage level but on reducing wage inequality
- Antonczyk et al. (2011)
 - wage inequality has risen sharply over the last 25 years
 - union membership rates have fallen steadily since 1980
 (20% in 2000, industry-wide bargaining contract coverage 47% for men in West Germany)
 - share of low qualified people stopped to decline since the mid-1990s
- Fall of the Iron Wall, the emergence of new markets, production opportunities for companies => erosion of union power
- => polarization did not develop while unions were an important player in the wage setting process
- => erosion of union power was reflected in new agreements (less protective against wage inequalities)

Conclusion

- employment
 - polarization from 1979 to 1999: routine tasks were substituted for non-routine tasks
 - reversed employment polarization from 1999 to 2012 repetitive long-run pattern of cyclical changes?
- wages
 - wage growth not polarized (at best slightly from 1999 to 2012)
 - routine cognitive and non-routine analytic tasks associated with wage gains
- rising task complexity

References

Antonczyk, D.; Fitzenberger, B.; Leuschner, U.:

Can a Task-Based Approach Explain the Recent Changes in the German Wage Structure? In: Journal of Economics and Statistics 229 (2009), Nr. 2-3, S. 214–238

Antonczyk, D.; Fitzenberger, B.; Sommerfeld, K.:

Anstieg der Lohnungleichheit, Rückgang der Tarifbindung und Polarisierung. In: Zeitschrift für Arbeitsmarktforschung 44 (2011), S. 15–27

Autor, D.; Levy, F.; Murnane, R. J.:

The Skill Content of Recent Technological Change: An Empirical Exploration. In: Quarterly Journal of Economics 118 (2003), Nr. 4, S. 1279–1334

BEAUDRY, P.; GREEN, D.A.; SAND, B. M.:

The Great Reversal in the Demand for Skill and Cognitive Tasks / National Bureau of Economic Research. 2013 (Working Paper Series 18901). — Working Paper

DUSTMANN, C.: FITZENBERGER, B.: SCHÖNBERG, U.: SPITZ-OENER, A.:

From Sick Man of Europe to Economic Superstar: Germany's Resurgent Economy. In: Journal of Economic Perspectives 28 (2014), Nr. 1, S. 167–188

DUSTMANN, C.; LUDSTECK, J.; SCHOENBERG, U.:

Revisiting the German Wage Structure.
In: Quarterly Journal of Economics 124 (2009), Nr. 2, S, 843–881

GOOS, Maarten; MANNING, Alan:

Lousy and Lovely Jobs: The Rising Polarization of Work in Britain.

In: The Review of Economics and Statistics 89 (2007), February, Nr. 1, 118-133. http://dieas.repec.org/a/tpr/restat/v89y2007ijn18-133.html

