The Evolution of Task Prices in Germany, 1980–2010

Michael Böhm, Hans-Martin von Gaudecker, and Felix Schran University of Bonn

1st International FDZ User Workshop

Institute for Social Research - Ann Arbor

Job Polarization in Germany

Similar in Dustmann, Ludsteck, Schoenberg (2009, QJE Figure 7b).

Increase in wage inequality across the board since 1990s

Same in Card, Heining, and Kline (2013, QJE Figure 1).

No occupational wage polarization or inequality increase

Different from Autor and Dorn (2013, AER Figure 1b), who find some occupational wage polarization in the US.

Are these facts connected? Prevailing view:

- ▶ Routine-Biased Technical Change (RBTC): new information & communication technologies substitute for work in routine tasks (e.g., assembly, record keeping).
- Occupations intense in routine tasks largely found in middle of wage distribution.

Seemingly clashes with the two pictures above. Series of papers find that over last decades

- employment polarized in US, Germany and most other advanced countries
- (occupational) wage distribution polarized only in US in 1990s.

Reconciling these facts

Böhm (2015) and Gottschalk, Green, Sand (2015):

- Changes in (occupational) wage distribution contain prices and composition effects.
- E.g., workers of different skills move across occupations, enter the labor market, and change position in wage distribution.
- Prices are determined by demand and supply for tasks, i.e., these composition effects are confounders.

Applications of task prices

- Assess importance of RBTC.
- Decompose changes in occupational wages into composition effects and market prices for tasks.
- Effect on overall wage inequality.
- Prices & quantities: learn about labor supply elasticities across tasks.

Also

- Decline of the gender wage gap (women more involved in price increasing tasks?)
- Educational decisions (increased share of university enrollees due to higher returns to cognitive/interpersonal tasks?)

Recent attempts to estimate task prices

- ► Firpo, Fortin, Lemieux (2013): decomposition of wages according to observables, remainder is task price.
- ► Gottschalk, Green, and Sand (2015): bounding based on different skill distributions in the Roy model.
- ► Cortes (2015): task fixed effects in panel data. Identification assumption that no switches due to changing skills.
- ▶ Böhm (2015): use sorting into tasks according observable talents and relate to changing returns to these talents.
- ► Yamaguchi (2012): dynamic structural Roy-type model estimated under normality of skill shocks in panel data.
- Heckman and Sedlacek (1985, classic): static structural Roy model estimated under normality of skill distribution.

This paper: propose a new way to estimate changing task prices

- Use static Roy framework.
- Exploit panel variation in workers' sorting into tasks and their wage growth (no demanding requirements on observables).
- Allow for multidimensional skills, changing skills, and endogenous sorting into tasks.
- ▶ Observable and unobservable components of skill matter.
- Allow for general distribution of unobservable skills and shocks.

Estimate in German IAB/BIBB data: evolution of task prices over time; decompose wages in tasks; assess wage distribution.

A K-task Roy model for panel data

K different occupations with (log) task prices $\pi = \{\pi_{1t}, \dots, \pi_{Kt}\}$

Workers possess (log) skills $s = \{s_{1t}, \dots, s_{Kt}\}$ and choose tasks that maximize their wage

$$W = max\{\pi_{1t} + s_{1t}, \dots, \pi_{Kt} + s_{Kt}\}$$

Consider a marginal change in potential wages in t. By the envelope theorem:

$$dw_t = egin{cases} dw_{1t} = d(\pi_{1t} + s_{1t}) & ext{if } I_{1t} = 1 \ & dots \ dw_{Kt} = d(\pi_{Kt} + s_{Kt}) & ext{if } I_{Kt} = 1. \end{cases}$$

where $I_{kt} = \mathbb{1}[w_{kt} > w_{jt} \ \forall j \neq k]$ occupational choice indicator.

General worker's wage change

Marginally,

$$dw_t = I_{1t}dw_{1t} + \ldots + I_{Kt}dw_{Kt} = \sum_{k=1}^{K} I_{kt}dw_{kt}$$

Integrate both sides from t-1 to t to get worker's overall wage gain (imprecise notation!):

$$\Delta w_t = \sum_{k=1}^K \int_{w_{kt-1}}^{w_{kt}} I_{k\tau} dw_{k\tau}$$

Linearly approximate the integrals for $\tau \epsilon(t-1,t)$:

$$I_{k\tau} \approx I_{kt-1} + \frac{I_{kt} - I_{kt-1}}{w_{kt} - w_{kt-1}} (w_{k\tau} - w_{kt-1})$$

Leads to a very intuitive result

$$\Delta w_{it} = \overline{I}_{i1t} \Delta w_{i1t} + \ldots + \overline{I}_{iKt} \Delta w_{iKt} = \sum_{k=1}^{K} \overline{I}_{ikt} \Delta (\pi_{kt} + s_{ikt}),$$

where introduced individual index i and $\bar{l}_{ikt} \equiv \frac{l_{ikt} + l_{ikt-1}}{2}$.

- if worker stayed in some sector k, gets potential wage gain Δw_{ikt} from that sector.
- if he switched, gets half of potential wage gain from origin and half from destination sector.
- Gathmann and Schoenberg (2010) show that occupational mobility in Germany is higher than thought.

Time-invariant skills $s_{ikt} = s_{ik}$

 $\beta_{kt} = \Delta \pi_{kt}$ identify the changing task prices from regression (under general multidimensional skill distribution):

$$\Delta w_{it} = \bar{l}_{i1t}\beta_{1t} + \ldots + \bar{l}_{iKt}\beta_{Kt} + u_{it}$$

- ▶ If workers do not switch jobs, related specification with task fixed effects (FE) also identifies $\Delta \pi_{kt}$.
- ▶ If workers do switch, "average" FE for destination and origin.
- ▶ Intuitive, as switching workers derive part of wage gain from origin and part from destination. Optimally use both info.
- Monte Carlo simulations show approximation of integrals no problem.
- Alternatively, worker-task FE (Cortes, 2015) or wage changes of only the stayers.

Time-varying skills s_{ikt} and endogenous switches

$$\Delta w_{it} = \sum_{k=1}^{K} \overline{I}_{ikt} \Delta \pi_{kt} + \sum_{k=1}^{K} \overline{I}_{ikt} \Delta s_{ikt},$$

where $\Delta s_{ikt} = f_K(I_{it-1}, age_{it-1}, educ_{it-1}, unobservables_{it-1})$. Learning by doing on the job (e.g., Yamaguchi 2012). If \bar{I}_{ikt} endogenous to Δs_{ikt} , bias. Model Δs_{ikt} as flexible function:

$$\Delta s_{ikt} = (I_{it-1} \times age_{it-1} \times educ_{it-1})\gamma_k + \varepsilon_{ikt}$$

If remaining ε_{ikt} small, solves the problem. $\Delta \pi_{kt}$ versus γ_k identified from *restriction* that latter no time index (skill acquisition function time-invariant). Need multiple periods.

German IAB and BIBB data

SIAB data provided by the IAB

- Panel which contains full job histories (social security data) and wages.
- 2% sample from 1980–2010 (41 mio observations)
- Wages top coded at social security maximum. Impute using Tobit-model as described in Gartner (2005, IAB publication).
- ▶ Only West-German males age 18(25)–55 because other groups' labor market attachment transient (identification from within-person wage growth).
- Observables: education, age, occupation, industry, etc (model a worker's task specific skill accumulation)

Task data provided by the German Federal Institute for Vocational Training (BIBB)

- Surveys of individual workers about which tasks they do in their jobs, e.g. 'how often do you repair stuff'.
- ▶ 6 repeated cross sections from 1979 2012 where 20.000 workers were asked what tasks they perform
- Assess task content of occupations.
- ► Also model task profiles by age, education, profession, etc.

Difficulty: need to harmonize questions (task measures) across surveys.

Occupation groups for which we estimate the task prices

- 1. Handcoded five occupation groups ("professions", preferred)
 - Managers/Professionals/Technicians, Sales/Office, Crafts (e.g., carpenter, roofer, plumber), Production/Operator, Services.
 - ► Inspired by Acemoglu & Autor (2011 HoLE)
 - Check task content of groups using BIBB.
- 2. Occupation groups according to BIBB task content
 - Two: routine and nonroutine.
 - ► Five: nonrout-cog, nonrout-int, rout-cog, rout-manual and manual.

Correlations between profession dummies and BIBB task variables

	nonrout-cog	nonrout-int	rout-cog	rout-manual	manual
Man/Prof/Tech	.78	.39	.42	48	5
Sales/Off	.03	.38	.45	24	23
Prod/Op	46	52	39	.66	.11
Crafts	25	21	19	.13	.28
Services	07	.15	16	28	.38

Task intensities by age in Mana., Prof., Tech.

Task intensities by age in Sales, Office

Task intensities by age in Craftspeople

Task intensities by age in Production, Operate

Task intensities by age in Service

Share of workers in professions relative to 1980

Real mean wages in professions relative to mean wages 1980

Decomposition of log wages in Man/Prof/Tech

Suggests a large increase in task price (through employment demand) and a strongly deteriorating skill of professionals.

Decomposition of log wages in Sale/Off

Again a positive demand shock, but very elastic labor supply response and only modest deterioration of skills.

Decomposition of log wages in Crafts

Continuous decline in demand with many leaving and the stayers slightly better skills than the leavers.

Decomposition of log wages in Services

Looks like large supply shock which increases employment and depresses prices. The skill composition actually improves!

Conclusion

- Propose method of estimating changing task prices from changing-over-time wage growth across jobs.
- Flexibly allow for systematic worker sorting.
- Estimate in German IAB data in context of task biased technological change and rising inequality.

Further steps:

- Disentangling prices and skill accumulation doesn't seem to work yet.
- Decompose occupational wages; assess effect on wage distribution.
- Deal with confounders: leavers from employment; policy changes (Hartz reforms).

Thank you!

Professions: Changes in daily log wages relative to the median, 1980-1990

Professions: Changes in daily log wages relative to the median, 1990-2000

Professions: Changes in daily log wages relative to the median, 2000-2010

OLS Estimation Results for 40-55 year olds

OLS - 5 years - professions - no controls - 40-55 year olds

OLS - 5 years - professions - control for past task - 40-55 year olds

OLS - 5 years - professions - control for past task \times age - 40-55 year olds

OLS - 5 years - professions - control for past task \times educ \times age - 40-55 year olds

OLS - 5 years - professions - control for past task \times educ \times age - 40-55 year olds

		$\Delta\pi_{prod,t}$	$\Delta(\pi_{mana,t} - \pi_{prod,t})$	$\Delta(\pi_{sale,t} - \pi_{prod,t})$	$\Delta(\pi_{craf,t} - \pi_{prod,t})$	$\Delta(\pi_{serv,t} - \pi_{prod,t})$
1985	β :	.0107	.1582	.0938	001	0999
	σ_{β} :	.0019	.0049	.0055	.0046	.0069
1990	β :	.1094	.1015	.049	.0055	1122
	σ_{β} :	.0021	.0049	.0054	.0046	.007
1995	β :	.0055	.1204	.0584	.0277	0819
	σ_{β} :	.0021	.0049	.0055	.0047	.0071
2000	β :	.0122	.1363	.0689	0009	1045
	σ_{β} :	.0021	.0049	.0055	.0048	.007
2005	β :	0152	.156	.0706	0018	1109
	σ_{β} :	.0021	.0049	.0054	.0047	.0069
2010	β :	0117	.1332	.0664	.0189	0862
	σ_{β} :	.0021	.0048	.0054	.0047	.0068

Skill accumulation: control for past task (\times age)

profession	all ages (40-55)	younger (40-47)	older (48-55)
Man/Prof/Tech	125	112	017
Sale/Off	05	039	016
Prod/Op			01
Crafts	019	017	004
Services	.135	.136	002

IV Estimation Results for all ages

IV - 5 years - professions - no controls

IV - 5 years - professions - control for past task

IV - 5 years - professions - control for past task \times age

IV - 5 years - professions - control for past task \times educ \times age

IV - 5 years - professions - control for past task \times educ \times age

		$\Delta\pi_{prod,t}$	$\Delta(\pi_{mana,t} - \pi_{prod,t})$	$\Delta(\pi_{sale,t} - \pi_{prod,t})$	$\Delta(\pi_{craf,t} - \pi_{prod,t})$	$\Delta(\pi_{serv,t} - \pi_{prod,t})$
1990	β:	.1003	414	1168	3185	4192
	σ_{β} :	.004	.033	.025	.0322	.0491
1995	β :	.0174	4273	1403	3328	4079
	σ_{β} :	.0041	.0331	.0249	.0321	.0489
2000	β :	0074	3752	1088	2956	4044
	σ_{β} :	.0041	.0331	.0249	.0321	.0488
2005	β :	0384	3565	1065	2966	4014
	σ_{β} :	.0041	.0331	.0249	.032	.0485
2010	β :	0182	3971	1263	322	4009
	σ_{β} :	.004	.0329	.0246	.0318	.0483

IV Estimation Results for 40-55 year olds

IV - 5 years - professions - no controls - 40-55 year olds

IV - 5 years - professions - control for past task - 40-55 year olds

IV - 5 years - professions - control for past task \times age - 40-55 year olds

IV - 5 years - professions - control for past task \times educ \times age - 40-55 year olds

IV - 5 years - professions - control for past task \times educ \times age - 40-55 year olds

		$\Delta\pi_{prod,t}$	$\Delta(\pi_{mana,t} - \pi_{prod,t})$	$\Delta(\pi_{sale,t} - \pi_{prod,t})$	$\Delta(\pi_{craf,t} - \pi_{prod,t})$	$\Delta(\pi_{serv,t} - \pi_{prod,t})$
1990	β:	.0909	154	0372	1979	3207
	σ_{β} :	.006	.0688	.0543	.0742	.1184
1995	β :	.0064	1598	0579	2107	311
	σ_{β} :	.0061	.0686	.054	.0738	.1173
2000	β :	0208	1115	0243	1615	2967
	σ_{β} :	.0065	.0691	.0544	.0739	.1176
2005	β :	0423	092	0273	1731	3039
	σ_{β} :	.0064	.0689	.0541	.0738	.1165
2010	β :	0223	1329	0473	1928	3011
	σ_{β} :	.0062	.0687	.0539	.0736	.1168

Thank you!

References I

Appendix

Literature

- ► Task changes and job polarization:
 - Autor2003
 - ► Autor2006
 - Acemoglu2011
 - ► Goos2014
- Occupational choice and change of tasks:
 - ▶ Spitz2006
 - ► Gathmann2010
 - Yamaguchi2012
- Measurement of task price polarization:
 - ▶ Boehm2015
 - Cortes2015

Empirical setup: Transition across

occupations and task-age profiles

Correlation between BIBB tasks

	nonrout-cog	nonrout-int	rout-cog	rout-manual	manual
nonrout-cog	1				
nonrout-int	.36	1			
rout-cog	.5	.36	1		
rout-manual	58	69	5	1	
manual	57	29	57	05	1

	stay occ	manag	sale	prod	craft	serv
manag	.875	.014	.01	.016	.004	.006
sale	.851	.005	.025	.016	.009	.009
prod	.886	.007	.012	.01	.009	.011
craft	.851	.001	.003	.003	.03	.027
serv	.862	.001	.003	.003	.017	.029

	stay occ	manag	sale	prod	craft	serv
manag	.856	.016	.01	.016	.005	.007
sale	.829	.007	.026	.018	.011	.012
prod	.862	.008	.017	.011	.014	.014
craft	.801	.001	.003	.003	.039	.028
serv	.807	.001	.003	.003	.023	.033

	stay occ	manag	sale	prod	craft	serv
manag	.837	.026	.015	.024	.005	.009
sale	.816	.012	.025	.023	.011	.012
prod	.835	.014	.02	.015	.012	.018
craft	.814	.001	.004	.004	.032	.027
serv	.831	.001	.003	.003	.022	.03

	stay occ	manag	sale	prod	craft	serv
manag	.903	.011	.007	.01	.003	.004
sale	.85	.007	.02	.015	.006	.008
prod	.897	.007	.012	.007	.006	.009
craft	.848	.001	.003	.003	.025	.015
serv	.865	.001	.003	.002	.014	.02

	stay occ	manag	sale	prod	craft	serv
manag	.606	.044	.023	.048	.011	.019
sale	.545	.017	.068	.053	.027	.03
prod	.623	.022	.035	.036	.033	.038
craft	.587	.001	.008	.009	.088	.071
serv	.61	.002	.008	.007	.052	.085

	stay occ	manag	sale	prod	craft	serv
manag	.54	.049	.023	.041	.013	.022
sale	.506	.02	.066	.046	.027	.034
prod	.581	.023	.038	.031	.034	.042
craft	.502	.001	.007	.007	.075	.062
serv	.54	.002	.007	.005	.043	.067

	stay occ	manag	sale	prod	craft	serv
manag	.529	.053	.031	.047	.015	.027
sale	.51	.024	.063	.051	.029	.034
prod	.57	.03	.041	.033	.034	.048
craft	.562	.002	.008	.009	.083	.067
serv	.582	.002	.007	.009	.054	.076

	stay occ	manag	sale	prod	craft	serv
manag	.605	.048	.025	.046	.011	.018
sale	.528	.027	.061	.055	.023	.026
prod	.635	.028	.04	.028	.022	.033
craft	.607	.002	.008	.008	.071	.049
serv	.619	.003	.007	.008	.044	.065

Employment Facts

Partial employment routinization (1993–2010): Sales& Office are rising, Crafts are falling

Occupation group	Percent employment share in 1993	Percentage point change over 1993-2010
Man/Prof/Tech	.22	.04
Sales/Off	.13	.03
Prod/Op	.4	03
Crafts	.18	03
Services	.06	.01

Partial employment routinization (1980–1993)

Occupation group	Percent employment share in 1980	Percentage point change over 1980-1993
Man/Prof/Tech	.2	.02
Sales/Off	.12	.01
Prod/Op	.45	05
Crafts	.18	0
Services	.05	.01

Employment changes in professions

Employment changes in five task groups

Partial employment routinization: both manual tasks are falling

Task group	Percent employment share in 1993	Percentage point change over 1993-2010
nonrout-cog	.08	.03
nonrout-int	.14	.02
rout-cog	.15	.01
rout-manual	.28	02
manual	.35	04

Partial employment routinization: both manual tasks are falling

Task group	Percent employment share in 1980	Percentage point change over 1980-1993
nonrout-cog	.07	.01
nonrout-int	.13	.01
rout-cog	.14	.01
rout-manual	.31	03
manual	.36	01

Share of workers in five task groups relative to 1980

Share of workers in two task groups relative to 1980

Employment change by occupational skill quantile

Wage Facts

Partial wage polarization (1993–2010): production and crafts wages drop but also service wages plummet

Occupation group	mean wage in occupation 1993 overall mean wage 1993	change of this ratio between 1993–2010
Man/Prof/Tech	1.39	.01
Sales/Off	1.11	.01
Prod/Op	.85	05
Crafts	.85	04
Services	.78	06

No wage polarization (1980-1993)

Occupation group	mean wage in occupation 1980 overall mean wage 1980	change of this ratio between 1980–1993
Man/Prof/Tech	1.41	02
Sales/Off	1.11	0
Prod/Op	.86	01
Crafts	.88	03
Services	.83	05

Real mean wages in professions relative to mean wages 1993

Log mean wages in professions

No Wage Polarization

Task group	mean wage in occupation 1993 overall mean wage 1993	change of this ratio between 1993 - 2010
nonrout-cog	1.45	01
nonrout-int	1.26	03
rout-cog	1.18	.04
rout-manual	.82	05
manual	.85	05

No Wage Polarization

Task group	mean wage in occupation 1980 overall mean wage 1980	change of this ratio between 1980 - 1993
nonrout-cog	1.49	05
nonrout-int	1.32	09
rout-cog	1.14	.08
rout-manual	.85	08
manual	.87	07

Log mean wages five task groups

Real mean wages in five task groups relative to mean wages 1980

Real mean wages in five task groups relative to mean wages 1993

Evolution of wage dispersion measures

Evolution of wage percentiles

Share of workers in professions in wage quantiles 1980

Share of workers in professions in wage quantiles 2000

Share of workers in professions in wage quantiles 2010

Share of workers in five tasks in wage quantiles 1980

Share of workers in five tasks in wage quantiles 2000

Share of workers in five tasks in wage quantiles 2010

ADD MONTE CARLO SIMULATIONS HERE OR AFTER MODEL OR INTO

APPFNDIX?

- ► How big is the bias due to the endogeneity in our estimation equation? And in what direction does it go?
- Is there an additional problem because of the linear approximation of the integral?
- Construct an artificial panel dataset (agent time) by explicitly specifying prices and skills, so we know the true values
- ► Then apply our estimation strategy and see how great the bias is for this artificial dataset
- ▶ Can artificially also get rid of endogeneity by using $\Delta w_{it}^* = \Delta w_{it} + \bar{N}_{it} \varepsilon_{Rit} \bar{N}_{it} \varepsilon_{Nit}$ instead of Δw_{it} on the left side
 - ▶ Increasing price polarization
 - ▶ Normal log skill shocks, no learning at all
 - ▶ 2000 agents, 20 periods, 400 simulations

Empirical Setup - Monte Carlo Simulations

Empirical Setup - Monte Carlo Simulations

Empirical Setup - Monte Carlo Simulations

Estimation Results for 5 year periods

OLS - 5 years - two tasks - no controls

OLS - 5 years - two tasks - control for past task

OLS - 5 years - two tasks - control for past task \times age

OLS - 5 years - two tasks - control for past task \times educ \times age

OLS - 5 years - five tasks - no controls

OLS - 5 years - five tasks - control for past task

OLS - 5 years - five tasks - control for past task \times age

OLS - 5 years - five tasks - control for past task \times educ \times age

Estimation Results for 1 year periods

OLS - yearly - professions - no controls

OLS - yearly - professions - control for past task

OLS - yearly - professions - control for past task \times age

OLS - yearly - professions - control for past task \times educ \times age

OLS - yearly - two tasks - no controls

OLS - yearly - two tasks - control for past task

OLS - yearly - two tasks - control for past task \times age

OLS - yearly - two tasks - control for past task \times educ \times age

OLS - yearly - five tasks - no controls

OLS - yearly - five tasks - control for past task

OLS - yearly - five tasks - control for past task \times age

OLS - yearly - five tasks - control for past task \times educ \times age

Decomposition of log wages in nonrout-cog

Decomposition of log wages in nonrout-int

Decomposition of log wages in rout-cog

Decomposition of log wages in manual

Decomposition of log wages in nonroutine

Professions: Changes in daily log wages relative to the median, 1980-1990

Professions: Changes in daily log wages relative to the median, 1990-2000

Professions: Changes in daily log wages relative to the median, 2000-2010

Five tasks: Changes in daily log wages relative to the median, 1980-1990

Five tasks: Changes in daily log wages relative to the median, 1990-2000

Five tasks: Changes in daily log wages relative to the median, 2000-2010

Professions: Evolution of predicted wage percentiles

Five tasks: Evolution of predicted wage percentiles

Two tasks: Evolution of predicted wage percentiles

Professions: Evolution of predicted wage dispersion measures

Five tasks: Evolution of predicted wage dispersion measures

Two tasks: Evolution of predicted wage dispersion measures

